K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 3

a) Vì \(f'\left( x \right) > 0\) khi \(x \in \left( {2;4} \right)\) và \(x \in \left( {6; + \infty } \right)\). Do đó, hàm số f(x) đồng biến trên \(\left( {2;4} \right)\) và \(\left( {6; + \infty } \right)\).

Vì \(f'\left( x \right) < 0\) khi \(x \in \left( {0;2} \right)\) và \(x \in \left( {4;6} \right)\). Do đó, hàm số f(x) nghịch biến trên \(\left( {0;2} \right)\) và \(\left( {4;6} \right)\).

b) Vì \(f'\left( x \right) < 0\) với mọi \(x \in \left( {0;2} \right)\) và \(f'\left( x \right) > 0\) với mọi \(x \in \left( {2;4} \right)\) thì \(x = 2\) là một điểm cực tiểu của hàm số f(x).

Vì \(f'\left( x \right) > 0\) với mọi \(x \in \left( {2;4} \right)\) và \(f'\left( x \right) < 0\) với mọi \(x \in \left( {4;6} \right)\) thì điểm \(x = 4\) là một điểm cực đại của hàm số f(x).

Vì \(f'\left( x \right) < 0\) với mọi \(x \in \left( {4;6} \right)\) và \(f'\left( x \right) > 0\) với mọi \(x \in \left( {6; + \infty } \right)\) thì điểm \(x = 6\) là một điểm cực tiểu của hàm số f(x).

7 tháng 4 2019

2 tháng 11 2018

5 tháng 4 2017

26 tháng 6 2017

Chọn A

+ Từ đồ thị của đạo hàm  ta lập được bảng biến thiên như sau

+ Dựa vào BBT ta suy ra giá trị lớn nhất của hàm số trên đoạn [-1;3] là f(0)

5 tháng 1 2019

15 tháng 12 2017

Đáp án D

2 tháng 8 2019

Từ đồ thị hàm số f(x) ta thấy đồ thị cắt trục hoành tại ba điểm phân biệt có hoành độ x=0;x=1;x=3 

Lại thấy đồ thị hàm số y=f(x) có ba điểm cực trị nên

 

Hàm số y = f x 2  có đạo hàm y'=2f(x).f '(x) 

Xét phương trình  

Ta có BXD của y' như sau

Nhận thấy hàm số y = f x 2  có y' đổi dấu từ âm sang dương tại ba điểm x=0;x=1;x=3 nên hàm số có ba điểm cực tiểu. Và y' đổi dấu từ dương sang âm tại hai điểm x = x 1 ; x = x 2  nên hàm số có hai điểm cực đại.

Chọn đáp án D.

14 tháng 6 2018

Chọn đáp án B.

26 tháng 5 2017

Đáp án đúng : A

19 tháng 4 2017

Đáp án B

f'(x) đổi dấu 1 lần, suy ra đồ thị hàm số f(x) có 1 điểm cực trị.