K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3

a) Xét đường tròn (O1) có AB tiếp xúc với (O1) tại B nên \(\widehat{ABD}=\widehat{BED}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{BD}\))

 Tương tự, ta có \(\widehat{ACD}=\widehat{DEC}\)

 Cộng theo vế 2 đẳng thức vừa tìm được, ta có:

 \(\widehat{ABD}+\widehat{ACD}=\widehat{BEC}\)

 \(\Rightarrow180^o-\widehat{BAC}=\widehat{BEC}\)

 \(\Rightarrow\widehat{BEC}+\widehat{BAC}=180^o\)

 \(\Rightarrow\) Tứ giác ABEC nội tiếp đường tròn (đpcm)

b) Gọi T là giao điểm của DE với (O)

Trong đường tròn (O2), ta có \(\widehat{BDE}=180^o-\widehat{CDE}=180^o-\dfrac{sđ\stackrel\frown{CE}_{lớn}}{2}\) \(=\dfrac{360^o-sđ\stackrel\frown{CE}_{lớn}}{2}\) \(=\dfrac{sđ\stackrel\frown{CE}_{nhỏ}}{2}\)  \(=\widehat{ACE}\)

 Trong đường tròn (O), ta có \(\widehat{ACE}=\dfrac{sđ\stackrel\frown{AE}}{2}\)

 Lại có \(\widehat{BDE}=\dfrac{sđ\stackrel\frown{BE}+sđ\stackrel\frown{CT}}{2}\) 

\(\Rightarrow\dfrac{sđ\stackrel\frown{AE}}{2}=\dfrac{sđ\stackrel\frown{BE}+sđ\stackrel\frown{CT}}{2}\)

 \(\Rightarrow sđ\stackrel\frown{AB}=sđ\stackrel\frown{CT}\)

 \(\Rightarrow\) AT//CB

 Do đó T là điểm cố định \(\Rightarrow\) DE đi qua T cố định.

 

 

26 tháng 3

Bạn vào trang cá nhân của mình xem trả lời nhé.

26 tháng 1 2018

Không ai trả lời không có nghĩa là mày  được spam, ok ?

26 tháng 1 2018

If mày định trình bày một idea nào đó, mày should dùng brain của mày 

31 tháng 5 2018

Ai giúp câu a, câu d vs

16 tháng 5 2021

( Mình sẽ làm tắt nha bạn, mấy chỗ đấy nó dễ rùi nếu ko hiểu thì cmt nhé )

a) Ta có: \(O_1B//O_2C\)( cùng vuông góc với BC )

\(\Rightarrow\widehat{BO_1A}+\widehat{CO_2A}=180^0\)

\(\Leftrightarrow\left(180^0-2\widehat{BAO_1}\right)+\left(180^0-2\widehat{CAO_2}\right)=180^0\)

\(\Leftrightarrow2\left(\widehat{BAO_1}+\widehat{CAO_2}\right)=180^0\)

\(\Leftrightarrow\widehat{BAO_1}+\widehat{CAO_2}=90^0\)

\(\Rightarrow\widehat{BAC}=90^0\)

=> tam giác ABC vuông tại A

b) \(\widehat{O_1BA}+\widehat{MBA}=\widehat{O_1AB}+\widehat{BAM}=90^0\)

\(\Rightarrow\widehat{O_1AM}=90^0\)

\(\Rightarrow AM\perp AO_1\)

=> AM là tiếp tuyến của \(\left(O_1\right)\)

CMTT : AM là tiếp tuyến của \(\left(O_2\right)\)

=> AM là tiếp tuyến chung của \(\left(O_1\right);\left(O_2\right)\)

+) Ta có: \(\hept{\begin{cases}\widehat{BMO_1}=\widehat{AMO_1}\\\widehat{CMO_2}=\widehat{AMO_2}\end{cases}}\)

Ta có; \(\widehat{BMO_1}+\widehat{AMO_1}+\widehat{CMO_2}+\widehat{AMO_2}=180^0\)

\(\Leftrightarrow2\left(\widehat{O_1AM}+\widehat{AMO_2}\right)=180^0\)

\(\Leftrightarrow\widehat{O_1AM}+\widehat{AMO_2}=90^0\)

\(\Leftrightarrow\widehat{O_1MO_2}=90^0\)

\(\Rightarrow O_1M\perp O_2M\)

d) Ta có: \(\widehat{O_1BA}=\widehat{O_1AB}=\widehat{O_2AD}=\widehat{O_2DA}\)

\(\widehat{\Rightarrow O_1BA}=\widehat{O_2DA}\)mà 2 góc này ở vị trí so le trong

\(\Rightarrow O_1B//O_2D\)

\(\Rightarrow\frac{AB}{AD}=\frac{AO_1}{AO_2}\left(1\right)\)

CMTT \(\Rightarrow\frac{AE}{AC}=\frac{AO_1}{AO_2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{AB}{AD}=\frac{AE}{AC}\)

\(\Rightarrow AB.AC=AD.AE\)

\(\Rightarrow\frac{1}{2}AB.AC=\frac{1}{2}AD.AE\)

\(\Rightarrow S_{\Delta ADE}=S_{\Delta ABC}\)

4 tháng 3 2020

Ban co de hsg Hai Phong nam 2019-2020 ko cho mik xin voi

a) dung phuong h

b) Ap dung cau a va bien doi mot chut

c) chua nghi ra 

5 tháng 3 2020

phuong h là cái gị