Cho \(\dfrac{a-b}{2}=\dfrac{b-c}{3}=\dfrac{c}{7}\). Rút gọn phân số: \(P=\dfrac{a^2-b^2}{b^2+c^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^2}{a^2-b^2-c^2}=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}=\dfrac{a^2}{\left(a-b\right)\left(-c\right)-c^2}=\dfrac{a^2}{c\left(b-a-c\right)}=\dfrac{a^2}{2bc}\\ \Leftrightarrow M=\sum\dfrac{a^2}{a^2-b^2-c^2}=\sum\dfrac{a^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}\\ \Leftrightarrow M=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2abc}=0\)
a) \(\dfrac{6}{14}=\dfrac{6:2}{14:2}=\dfrac{3}{7}\)
\(\dfrac{3}{7}< \dfrac{4}{7}\)
b) \(\dfrac{6}{15}=\dfrac{6:3}{15:3}=\dfrac{2}{5}\)
\(\dfrac{3}{5}>\dfrac{2}{5}\)
c) \(\dfrac{10}{18}=\dfrac{10:2}{18:2}=\dfrac{5}{9}\)
\(\dfrac{5}{9}>\dfrac{2}{9}\)
Lời giải:
\(a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z}\)
\(A=\frac{\frac{1}{x^2y^2}}{(\frac{1}{x^3}+\frac{1}{y^3}).\frac{1}{z^2}}=\frac{z^2}{x^2y^2.\frac{x^3+y^3}{x^3y^3}}=\frac{z^2}{\frac{x^3+y^3}{xy}}=\frac{xyz^2}{x^3+y^3}\)
\(\dfrac{4\cdot5\cdot36}{35\cdot9\cdot2}=\dfrac{2^2\cdot5\cdot2^2\cdot3^2}{5\cdot7\cdot3^2\cdot2}=\dfrac{2^3}{7}=\dfrac{8}{7}\left(C\right)\)
\(1,a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+2bc+c^2\Leftrightarrow b^2+c^2=a^2-2bc\)
Tương tự: \(\left\{{}\begin{matrix}a^2+b^2=c^2-2ab\\c^2+a^2=b^2-2ac\end{matrix}\right.\)
\(\Leftrightarrow N=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ca}+\dfrac{c^2}{c^2-c^2+2ac}\\ \Leftrightarrow N=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{a^3+b^3+c^3-3abc+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
Ta có: a+b+c=0\(\Leftrightarrow\)b+c=-a
Bình phương hai vế có: (b+c)2=a2
⇔ b2+2bc+c2=a2\(\Leftrightarrow\) b2+c2-a2=-2bc
Tương tự, ta có: c2+a2-b2=-2ca
a2+b2-c2=-2ab
→ A=\(-\dfrac{1}{2bc}-\dfrac{1}{2ca}-\dfrac{1}{2ab}=\dfrac{-\left(a+b+c\right)}{2abc}=0\)(vì a+b+c=0)
Vậy A=0
\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)
\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)
Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)
\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)
Cái đầu ko rút gọn được
Cái sau:
\(=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a+c-b\right)}=\dfrac{a+b-c}{a-b+c}\)
lạ vậy