K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

Xét ΔPAM vuông tại P và ΔQAM vuông tại Q có

AM chung

\(\widehat{PAM}=\widehat{QAM}\)

Do đó: ΔPAM=ΔQAM

=>PA=QA và MP=MQ

b: AP=AQ

=>A nằm trên đường trung trực của PQ(1)

MP=MQ

=>M nằm trên đường trung trực của PQ(2)

Từ (1) và (2) suy ra AM là đường trung trực của PQ

=>AM\(\perp\)PQ

27 tháng 1 2019

Bạn ơi cho mình hỏi kiến thức được sử dụng trong bài dừng ở đâu

13 tháng 11 2020

tự kẻ hình nha

a) Vì M là trung điểm AB, PM=MQ, P,M,Q thẳng hàng=> M là trung điểm PQ

=>PQ giao AB tại trung điểm mỗi đường=> APBQ là hbh mà AB vuông góc với PQ=> APBQ là hình thoi

b) vì APBQ là hình thoi=> PB//AQ mà PB//CE=> CE//AQ (1)

ta có PQ vuông góc với AB

AC vuông góc với AB

=> AC//PQ=> EQ//AC ( PQ cắt đường thẳng // với PB tại E=> E thuộc PQ)(2)

từ (1);(2)=> ACEQ là hbh

c) 1) trong tam giác ABC có 

MN //AC( N thuộc MP)

AM=MB

=> MN là đtb của tam giác => MN=AC/2=> AC=2MN

2) Vì AC=2MN=> AC=6cm

MN là đtb=> CN=BN 

tam giác ABC vuông tại A

=> AN=BN=CN=BC/2( tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)

=> BC=2AN=10cm 

vì tam giác ABC vuông tại A=> AB^2+AC^2=BC^2

=> AB^2=100-36

=> AB=8 (AB>0)

=> chu vi tam giác ABC là 6+8+10=24(cm)

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có

BC chung

\(\widehat{FBC}=\widehat{ECB}\)

DO đó: ΔFBC=ΔECB

Suy ra: FB=EC

b: Ta có: AF+FB=AB

AE+EC=AC

mà BF=CE

và AB=AC

nên AF=AE

Xét ΔABC có AF/AB=AE/AC

nên FE//BC