Cho hai số tự nhiên a,b ko chia hết cho 3 và chia cho 3 ko cùng số dư.Chứng minh rằng a+b chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi kết quả khi chia a cho3 là X và số dư là Z \(\rightarrow\)a=3X +Z ( x>z)
gọi kết quả khi chia b cho 3 là Y \(\rightarrow\)b=3y +z (y>z)
\(\Rightarrow\)a.b-1= (3x+z)(3y+z)-1= 9xy +3xz+3yz+z2-1
ta có 9xy chia hết cho 3
3xz chia hết cho 3
3yx chia hết cho 3
-> chỉ cần z2-1 \(⋮\)3 thì ( a.b-1)\(⋮\)3
vì z là số dư nên z\(\in\){1;2}
nếu z=1 thì 12-1 \(⋮\)3
nếu z=2 thì 22\(⋮\)3
vậy với giá trị nào thì z2-1 cũng chia hết cho 3
vậy (a.b-1)\(⋮\)3
k mk nha
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
a) Ta có:
a = 3k + r
b = 3h + r
(Chú ý k > h vì a > b)
a - b = 3k + r - 3h - r
= 3(k - h)
\(\Rightarrow\)
b) Đề sai. Vì nếu a : 3 dư 2 và b chia hết cho 3 thì tổng a + b sẽ không chia hết cho 3
Gọi a = k1 . 3 + r
b = k2 . 3 + r
Xét a - b, ta có: a - b = ( k1 . 3 + r) - (k2 . 3 + r)
a - b = k1 . 3 + r - k2 . 3 - r
a - b = k1 . 3 - k2 . 3
a - b = 3 . ( k1 - k2)
Suy ra a - b chia hết cho 3 (đpcm)
Bài giải
Các số dư của 3 (khác 0) : 1;2
Giả sử ta có : 3a + 1 ; 3b + 2 (khác số dư)
=> (3a + 1) + (3b + 2) = 3a + 3b + 3 chia hết cho 3
a,b không chia hết cho 3 thì chia 3 dư 1, 2
a,b không cùng số dư khi chia 3 thì \(\orbr{\begin{cases}a=3k+1;b=3l+2\\a=3m+2;b=3n+1\end{cases}}\)
\(\Rightarrow a+b=\orbr{\begin{cases}3k+1+3l+2=3k+3l+3=3\left[k+l+1\right]⋮3\\3m+2+3n+1=3m+3n+3=3\left[m+n+1\right]⋮3\end{cases}}\)
Vậy:..............