K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2024

2\(x\)(\(x-3\)) = 0

\(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

 \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy \(x\in\) {0; 3}

21 tháng 3 2024

2x(x - 3) = 0

⇒ 2x = 0 hoặc x - 3 = 0

*) 2x = 0

x = 0

*) x - 3 = 0

x = 0 + 3

x = 3

Vậy x = 0; x = 3

28 tháng 7 2015

1) (2x-1)(x+3)(2-x)=0

=>2x-1 =0 hoặc x+3=0 hoặc 2-x=0

=>x=1/2 hoặc x=-3 hoặc x=2

2)x^3 + x^2 + x + 1 = 0

=>.x^2(x+1)+(x+1)=0

=>(x^2+1)(x+1)=0

=>x^2+1=0 hoặc x+1=0 

=>                      x =-1

3) 2x(x-3)+5(x-3) =0    

=>(2x+5)(x-3)=0

=>2x+5=0 hoặc x-3=0

=>x=-5/2 hoặc x=3

4)x(2x-7)-(4x-14)=0

=> (x-2)(2x-7)=0

=> x-2 =0 hoặc 2x-7=0

=>x=2 hoặc x=7/2

5)2x^3+3x^2+2x+3=0

=>x^2(2x+3)+2x+3=0

=>(x^2+1)(2x+3)=0

=>x^2+1=0 hoặc 2x+3=0

=>                      x =-3/2

19 tháng 2 2017

x = 3/2 đó mình chắc chắn 100 %

1 tháng 9 2020

( 2x - 3 )( x + 1 ) - 2x2 + 6x = 0

<=> 2x2 - x - 3 - 2x2 + 6x = 0

<=> 5x - 3 = 0

<=> 5x = 3

<=> x = 3/5

( x2 - x + 1 )( x - 3 ) - x3 + 4x2 = 0

<=> x3 - 4x2 + 4x - 3 - x3 + 4x2 = 0

<=> 4x - 3 = 0

<=> 4x = 3

<=> x = 3/4

( x2 - 2 )( x2 + 2 ) - x4 - 2x + 5 = 0

<=> ( x2 )2 - 4 - x4 - 2x + 5 = 0

<=> x4 + 1 - x4 - 2x = 0

<=> 1 - 2x = 0

<=> 2x = 1

<=> x = 1/2

( x - 3 )( x2 - 3x + 2 ) - ( x2 - 2x - 7 )( x - 2 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - ( x3 - 4x2 - 3x + 14 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - x3 + 4x2 + 3x - 14 + 2x2 - 2x = 0

<=> 12x - 20 = 0

<=> 12x = 20

<=> x = 20/12 = 5/3

1 tháng 9 2020

a, \(\left(2x-3\right)\left(x+1\right)-2x^2+6x=0\)

\(\Leftrightarrow2x^2+2x-3x-3-2x^2+6x=0\Leftrightarrow5x-3=0\Leftrightarrow x=\frac{3}{5}\)

b, \(\left(x^2-x+1\right)\left(x-3\right)-x^3+4x^2=0\)

\(\Leftrightarrow x^3-3x^2-x^2+3x+x-3-x^3+4x^2=0\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)

c ; d tương tự nhé ! 

a: (2x+1)(3-x)(4-2x)=0

=>(2x+1)(x-3)(x-2)=0

hay \(x\in\left\{-\dfrac{1}{2};3;2\right\}\)

b: 2x(x-3)+5(x-3)=0

=>(x-3)(2x+5)=0

=>x=3 hoặc x=-5/2

c: =>(x-2)(x+2)+(x-2)(2x-3)=0

=>(x-2)(x+2+2x-3)=0

=>(x-2)(3x-1)=0

=>x=2 hoặc x=1/3

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

e: =>(2x+5+x+2)(2x+5-x-2)=0

=>(3x+7)(x+3)=0

=>x=-7/3 hoặc x=-3

f: \(\Leftrightarrow2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

hay \(x\in\left\{0;-3;\dfrac{1}{2}\right\}\)

`#3107.\text {DN01012007}`

\(\left(x-5\right)\cdot\left(3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\3-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0+5\\x=3-0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)

Vậy, \(x\in\left\{3;5\right\}\)

_______

\(\left(2x-8\right)\cdot\left(5-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-8=0\\5-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=8\\x=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\div2\\x=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

Vậy, \(x\in\left\{4;5\right\}\)

_______

\(7x\left(2x-14\right)=0\\ \Rightarrow\left[{}\begin{matrix}7x=0\\2x-14=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\2x=14\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=14\div2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)

Vậy, \(x\in\left\{0;7\right\}\)

______

\(\left(2x-4\right)\cdot\left(6-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-4=0\\6-2x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=4\\2x=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\div2\\x=6\div2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy, \(x\in\left\{2;3\right\}.\)

5 tháng 9 2020

a. \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow x^2-2x-x^3+4x^2-3x=0\)

\(\Leftrightarrow-x^3+5x^2-5x=0\)

\(\Leftrightarrow-x\left(x^2-5x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x^2-5x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2-\frac{5}{4}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{cases}}\)

5 tháng 9 2020

a) \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-2-x^2+4x-3\right)=0\)

\(\Leftrightarrow x\left(-x^2+5x-5\right)=0\)

\(\Leftrightarrow x\left(x-\frac{5+\sqrt{5}}{2}\right)\left(x-\frac{5-\sqrt{5}}{2}\right)=0\)

=> \(x\in\left\{0;\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)

b) \(\left(2x-5\right)\left(x+3\right)-\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow2x^2+x-15-2x^2-x+3=0\)

\(\Leftrightarrow-12=0\left(vn\right)\)

c) \(\left(x-2\right)\left(x^2+2x+8\right)-x^3-2x+1=0\)

\(\Leftrightarrow x^3+4x-16-x^3-2x+1=0\)

\(\Leftrightarrow2x=15\)

\(\Rightarrow x=\frac{15}{2}\)

29 tháng 11 2021

Answer:

\(\left(2x-3\right).\left(x+1\right)-x.\left(2x+3\right)-9=0\)

\(\Rightarrow\left(2x^2+2x-3x-3\right)-2x^2-3x-9=0\)

\(\Rightarrow\left(2x^2-x-3\right)-2x^2-3x-9=0\)

\(\Rightarrow2x^2-x-3-2x^2-3x-9=0\)

\(\Rightarrow\left(2x^2-2x^2\right)-\left(x+3x\right)-\left(3+9\right)=0\)

\(\Rightarrow-4x-12=0\)

\(\Rightarrow x+3=0\)

\(\Rightarrow x=-3\)

\(2x.\left(x-3\right)-x+3=0\) (Sửa đề)

\(\Rightarrow2x.\left(x-3\right)-\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right).\left(2x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\2x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)

\(2x.\left(x^2-4\right)+6.\left(4-x^2\right)=0\)

\(\Rightarrow2x.\left(x^2-4\right)-6.\left(x^2-4\right)=0\)

\(\Rightarrow2.\left(x-3\right).\left(x+2\right).\left(x-2\right)=0\)

Trường hợp 1: \(x-3=0\Rightarrow x=3\)

Trường hợp 2: \(x+2=0\Rightarrow x=-2\)

Trường hợp 3: \(x-2=0\Rightarrow x=2\)

5 tháng 9 2019

a) 3x(4x - 3) - 2x(5 - 6x) = 0

=> 6x2 - 9x - 10x + 12x2 = 0

=> 18x2 - 19x = 0

=> x(18x - 19) = 0

=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)

b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0

=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0

=> 8x - 15 = 0

=> 8x = 15

=> x = 15 : 8 = 15/8

c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)

=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x

=> 4x - x2 - 5x2 - 15x = 0

=> -6x2 - 11x = 0

=> -x(6x - 11) = 0

=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)

5 tháng 9 2019

a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)

b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)

\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)

\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)

a) Ta có: 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{19}{24}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{19}{24}\right\}\)

b) Ta có: \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)

\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

hay \(x=\frac{15}{8}\)

Vậy: \(x=\frac{15}{8}\)

c) Ta có: \(3x\left(2-x\right)+2x\left(x-1\right)=5x\left(x+3\right)\)

\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\)

\(\Leftrightarrow-x^2+4x-5x^2-15x=0\)

\(\Leftrightarrow-6x^2-11x=0\)

\(\Leftrightarrow6x^2+11x=0\)

\(\Leftrightarrow x\left(6x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-11}{6}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{-11}{6}\right\}\)

d) Ta có: \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)

\(\Leftrightarrow14x^2+18=0\)

\(\Leftrightarrow14x^2=-18\)

\(14x^2\ge0\forall x\)

nên \(x\in\varnothing\)

Vậy: \(x\in\varnothing\)