K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{50^2}< \dfrac{1}{49\cdot50}=\dfrac{1}{49}-\dfrac{1}{50}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=\dfrac{49}{50}\)

=>\(A=\dfrac{1}{2^2}+\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)< \dfrac{1}{2^2}+\dfrac{1}{2^2}\cdot\dfrac{49}{50}=\dfrac{1}{4}\left(1+\dfrac{49}{50}\right)=\dfrac{1}{4}\cdot\dfrac{99}{50}=\dfrac{99}{200}< \dfrac{1}{2}\)

11 tháng 6 2017

2 tháng 8 2021

A. 1155 nha bạn 

12 tháng 6 2017

3 tháng 10 2018

  1 2 2   < 1 1.2 ; 1 3 2 < 1 2.3 ; 1 4 2 < 1 3.4 ; ... ; 1 10 2 < 1 9.10

⇒ 1 2 2   + 1 3 2 + 1 4 2 + 1 10 2 < 1 1.2 + 1 2.3 + 1 3.4 + ... + 1 9.10 < 1.

18 tháng 12 2019

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

8 tháng 8 2019

1 2 2 + 1 3 2 + 1 4 2 + ... + 1 9 2 > 1 2.3 + 1 3.4 + 1 4.5 + ... + 1 9.10 = 2 5

1 2 2 + 1 3 2 + 1 4 2 + ... + 1 9 2 < 1 1.2 + 1 2.3 + 1 3.4 + 1 8.9 = 8 9

29 tháng 5 2019

a ) 1 2.3 + 1 3.4 + ... + 1 6.7 = 1 2 − 1 7 < 1 2 .

b ) 4 1.5 + 4 5.9 + 4 9.13 + 4 13.17 + 4 17.21 = 1 − 1 21 < 1. c ) T a   c ó     1 2 2   < 1 1.2 ; 1 3 2 < 1 2.3 ; 1 4 2 < 1 3.4 ; ... ; 1 10 2 < 1 9.10 . D o   đ ó , 1 2 2   + 1 3 2 + 1 4 2 + 1 10 2 < 1 1.2 + 1 2.3 + 1 3.4 + ... + 1 9.10 < 1.

4 tháng 12 2019

a ) 1 3.4 + 1 4.5 + ... + 1 19.20 = 1 3 − 1 20 = 17 60 < 1 2

b ) 3 1.4 + 3 4.7 + 3 7.10 + ... + 3 97.100 = 1 − 1 100 < 1

c ) T a   c ó   : 1 2 2 + 1 3 2 + 1 4 2 + ... + 1 9 2 > 1 2.3 + 1 3.4 + 1 4.5 + ... + 1 9.10 = 2 5

1 2 2 + 1 3 2 + 1 4 2 + ... + 1 9 2 < 1 1.2 + 1 2.3 + 1 3.4 + 1 8.9 = 8 9