Cho parabol (P) : y = ax² (a≠0).
a) Vẽ parabol (P) vớiva = 3
b) Xác định a, biết A(2;trừ 5 phần 4) thuộc (P)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=2 vào y=ax2, ta được:
\(a\cdot1^2=2\)
hay a=2
c: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x^2-2x-4=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(2;8\right);\left(-1;2\right)\right\}\)
Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có
\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)
\(\Rightarrow y=x^2-2x-24\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{2}{2a}=1\\-\dfrac{2^2-4ac}{4a}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\4+4c=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\c=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{2a}=4\\-\dfrac{64-4ac}{4a}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\-64+4c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=31\end{matrix}\right.\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{-2}{2a}=-1\\-\dfrac{4-4ac}{4a}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\4-4c=-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{2a}=4\\-\dfrac{64-4ac}{4a}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\-64+4c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=31\end{matrix}\right.\)
a: Thay a=3 vào (P), ta được:
\(y=a\cdot x^2=3x^2\)
Vẽ đồ thị:
b: Thay x=2 và \(y=-\dfrac{5}{4}\) vào (P), ta được:
\(a\cdot2^2=-\dfrac{5}{4}\)
=>\(a\cdot4=-\dfrac{5}{4}\)
=>\(a=-\dfrac{5}{4}:4=-\dfrac{5}{16}\)