Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{2a}=4\\-\dfrac{64-4ac}{4a}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\-64+4c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{2}{2a}=1\\-\dfrac{2^2-4ac}{4a}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\4+4c=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\c=4\end{matrix}\right.\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{-2}{2a}=-1\\-\dfrac{4-4ac}{4a}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\4-4c=-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=6\end{matrix}\right.\)
Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có
\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)
\(\Rightarrow y=x^2-2x-24\)
Đề bài thiếu, không thể xác định chính xác (P) khi chỉ biết đỉnh
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}a\cdot0+b\cdot0+c=1\\-\dfrac{b}{2a}=\dfrac{1}{2}\\-\dfrac{b^2-4ac}{4a}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-b^2-4a=3a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-4a^2-4a-3a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a=-\dfrac{7}{4}\\b=\dfrac{7}{2}\end{matrix}\right.\)
giúp mình với ạ
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{2a}=4\\-\dfrac{64-4ac}{4a}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\-64+4c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=31\end{matrix}\right.\)