Cho △ABC vuông cân tại A, biết AB= 5 cm. Tính BC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông cân tại A
=> AB = AC = 2
Áp dụng định lý Pytago vào tam giác vuông ABC có :
AB2 + AC2 = BC2
<=> 22 + 22 = BC2
<=> BC2 = 8
<=> BC = \(\sqrt{8}\)cm
bài 1 : AH = \(\sqrt{119}\)cm
bài 2 : BN = \(\sqrt{49.54}\)cm
* hình tự vẽ
1/
Xét tam giác ABC: tam giác ABC là tam giác cân(gt) mà AH là đường cao(vì AH\(\perp\)BC)=> AH cũng là đường trung tuyến=> BH=HC
Ta có: BC=HB+HC, mà HB=HC(cmt)=> HB=HC=\(\frac{BC}{2}\)=> HB=HC= 5cm
Xét tam giác ACH, theo định lý Py ta go, có:
AH^2+ HC^2=AC^2
=> AH^2+ 5^2= 12^2
=> AH^2= 144-25
=> AH^2= 119=> AH= căn 119cm
2/ Xét tam giác BCA, theo định lý Py ta go, có:
BA^2+ AC^2= BC^2=> 12^2+5^2=BC^2
=> 144+25= BC^2=> BC^2= 169=>BC=13cm
Mà M là trung điểm BC(gt)=> MB=MC nên ta có BC=MB+MC=> MB=MC=\(\frac{BC}{2}\)=> MB=MC=6,5
Xét tam giác BMN, theo định lý Py ta go, có:
BN^2+NM^2= BM^2
=> BN^2+2,7^2=6,5^2=> BN^2 = 42,25-7,29=> BM^2= 34,96=> BM= căn 34,96cm
Áp dụng định lý pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\sqrt{18^2}=2AB^2\) ( vì AB = AC )
\(\Leftrightarrow18=2AB^2\)
\(\Leftrightarrow AB^2=9\)
\(\Leftrightarrow AB=AC=3cm\)
Sửa đề: AD là đường phân giác
a) Sửa đề: Chứng minh AD vuông góc với BC
Ta có: ΔABC cân tại A(Gt)
mà AD là đường phân giác ứng với cạnh đáy BC(gt)
nên AD là đường cao ứng với cạnh BC(Định lí tam giác cân)
hay AD\(\perp\)BC(Đpcm)
b) Ta có: ΔABC cân tại A(Gt)
mà AD là đường cao ứng với cạnh đáy BC(Cmt)
nên AD là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)
\(\Leftrightarrow\)D là trung điểm của BC
hay \(BD=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:
\(AB^2=AD^2+BD^2\)
\(\Leftrightarrow AD^2=AB^2-BD^2=10^2-6^2=64\)
hay AD=8(cm)
Vậy: AD=8cm
Ta có AH vuông góc với BC nên AH là đường cao . Mà tam giác ABC là tam giác cân nên AH vừa là đường cao vừa là đường trung tuyến . Suy ra H là trung điểm BC vậy BH=BC : 2=6:2=3 (cm) Áp dụng định lý py-ta-go trong tam giác vuông AHB ta có : AB2=AH2+BH2 \(\Leftrightarrow\)52=AH2+32 \(\Leftrightarrow\)AH2=25-9=16 \(\Rightarrow\) AH=4\(\)
Câu hỏi của Trần Dần - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
ΔBAC vuông cân tại A nên AB=AC=5cm
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{5^2+5^2}=5\sqrt{2}\left(cm\right)\)
ΔBAC vuông cân tại A nên AB=AC=5cm
BC là cạnh huyền
Áp dụng định lý Pytago ta có :
BC2= AB2+ AC2
BC2 = 25+25=50
BC = 5 \(\sqrt{ }\)2(cm)