cmr \(n^2+3n-38\)khong chia het cho 49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại n sao cho \(S=n^2 + 3n - 38\) chia chết cho \(49\).
Khi đó xét biểu thức:
\(n^2 - 4n + 4 = n^2 + 3n - 7n -38 + 42 \)
\(= n^2 + 3n - 38 - 7(n - 6)\) chia hết cho \(7\)
Biểu thức đem xét là \(n^2 - 4n + 4\) viết \(-4n \)
\(= -7n + 3n; 4 \)
\(= -38 + 42\)
\(\Rightarrow\)\( n^2 - 4n + 4 \)
\(= (n - 2)^2\) chia hết cho \(7\) hay \(n-2\) chia hết cho \( 7\)
Gọi \(n - 2 = 7t \)
\(\Rightarrow\)\( n = 2 + 7t\). Thay vào \(S\) ta có:
\(S = (2 + 7t)^2 + 3(2 + 7t) - 38 \)
\(= 4 + 28t + 49t^2 + 6 + 21t - 38 \)
\(= 49t^2 + 49t - 28 \)
\(\Rightarrow S\) không chia hết cho \(49\)
\(\RightarrowĐpcm\)
Giả sử n2+3n-38 chia hết cho 49
=> n2 + 3n - 38 chia hết cho 7
=> n2 -4n + 7n -42 + 4 chia hết cho 7
=> n2 - 4n +4 +7n-42 chia hết cho 7
=> (n-2)2 chia hết cho 7
=> n-2 chia hết cho 7
Vậy n có dạng 7k + 2
Thay n=7k+2 vào n2+3n-38 ta được:
(7k + 2)2 +3(7k + 2) - 38 = 49k2 + 28k + 4 + 21k + 6 - 38 = 49k2 +49k -28 không chia hết cho 49 (trái với điều giả sử)
Vậy n2 + 3n - 38 không chia hết cho 49
a)
Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9
Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .
Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .
Ta có : A = (n-1 ) (n+2) + 12
A = n x n + n x 2 - n - 2 + 12
A = n x n + n + 10 A = n x (n + 1) + 10
A - 10 = n x (n + 1)
Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .
Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :
A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .
Vậy A - 10 = n x (n + 1) không chia hết cho 9 .
Hay (n-1 ) (n+2) + 12 không chia hết cho 9
b)
Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49
Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.
Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :
A = ( n + 2 ) ( n +9 ) + 21
A = n x n + 9 x n + 2 x n + 18 + 21
A = n x n + 11 x n + 39
A - 39 = n x ( n + 11)
Vì giả thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên
A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Câu a :
Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9
Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .
Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .
Ta có : A = (n-1 ) (n+2) + 12
A = n x n + n x 2 - n - 2 + 12
A = n x n + n + 10 A = n x (n + 1) + 10
A - 10 = n x (n + 1)
Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .
Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :
A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .
Vậy A - 10 = n x (n + 1) không chia hết cho 9 .
Hay (n-1 ) (n+2) + 12 không chia hết cho 9
Câu b :
Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49
Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.
Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :
A = ( n + 2 ) ( n +9 ) + 21
A = n x n + 9 x n + 2 x n + 18 + 21
A = n x n + 11 x n + 39
A - 39 = n x ( n + 11)
Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên
A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Nguồn :Toán Tiểu Học Pl
Ta co: 2n-1 chia het cho 7 nen 2n-1+2 se chia 7 du 2
=> 2n+1 khong chia het cho 7