\(1.CMR:\)
\(n^6+n^4-2n^2\)\(⋮72\)\(\left(n\in Z\right)\)
\(2\)Tìm điều Kiện \(a\)để \(a^2+3a+2⋮6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có \(B=n^6+n^4-2n^2=n^2\left(n^4+n-2\right)=n^2\left(n^2-1\right)\left(n^2+2\right)=\left(n-1\right)n^2\left(n+1\right)\left(n^2+2\right)\)
Nếu \(n=2k\Rightarrow B=\left(2k-1\right)4k^2\left(2k+1\right)\left(4k^2+2\right)⋮8\)
Nếu \(n=2k+1\Rightarrow B=2k.\left(2k+1\right)^2.2\left(k+1\right)\left[\left(2k+1\right)^2+2\right]⋮8\)
Vậy B chia hết 8 với mọi n.
+ Nếu n chia hết 3 thì B chia hết 9.
+ Nếu n không chia hết cho 3 thì n2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n2 + 2 chia hết cho 3. Mà n(n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra B chia hết cho 9.
Tóm lại B cũng chia hết cho 9 với mọi n.
Lại có (9;8) = 1 nên B luôn chia hết cho 72.
2) Ta có \(a^2+3a+2=\left(a+1\right)\left(a+2\right)\)
Để tích hai số tự nhiên liên tiếp chia hết cho 6 thì một trong hai số phải chia hết cho 3.
TH1: \(a+1=3k\Rightarrow a=3k-1\left(k\in Z\right)\)
TH2: \(a+2=3k\Rightarrow a=3k-2\left(k\in Z\right)\)
2.
\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)
\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)
*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)
*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)
\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)
\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)
\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)
\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)
-Vậy \(n=1\)
1. \(x^2+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=0\)
\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)
-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.
\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.
-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.
*Xét \(\left(x-z\right)⋮2\):
\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.
*Xét \(\left(x+z\right)⋮2\):
\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.
\(n^6+n^4-2n^2\)
\(=n^2\left(n^4+n^2-2\right)\)
\(=n^2\left[\left(n^4-1\right)+n^2-1\right]\)
\(=n^2\left[\left(n^2-1\right)\left(n^2+1\right)+n^2-1\right]\)
\(=n^2\left(n^2-1\right)\left(n^2+1+1\right)\)
\(=n^2\left(n^2-1\right)\left(n^2+2\right)\)
\(=n\left(n-1\right)\left(n+1\right)n\left(n^2+2\right)\)
Xét \(n=2k\) , ta có :
\(\left(2k\right)^2\left[\left(2k\right)^2-1\right]\left[\left(2k\right)^2+2\right]=4k^2\left(2k-1\right)\left(2k+1\right)\left(4k^2+2\right)\)
\(=8k^2\left(2k-1\right)\left(2k+1\right)\left(2k^2+1\right)⋮8\left(1\right)\)
Xét \(n=2k+1\) , ta có :
\(\left(2k+1\right)^2\left[\left(2k+1\right)^2-1\right]\left[\left(2k+1\right)^2+2\right]=\left(2k+1\right)^2.2k\left(2k+2\right)\left(4k^2+4k+1+2\right)\)
\(=\left(2k+1\right)^2.4k\left(k+1\right)\left(4k^2+4k+3\right)⋮8\left(2\right)\)
( do \(k\left(k+1\right)⋮2\Rightarrow4k\left(k+1\right)⋮8\) )
Với n \(⋮3\Rightarrow n^2⋮9\) \(\Rightarrow n^2\left(n^2-1\right)\left(n^2+2\right)⋮9\left(3\right)\)
Với n \(⋮3̸\) \(\Rightarrow n^2:3\) ( dư 1 ) \(\Rightarrow n^2-1⋮3\Rightarrow n^2+2⋮3\)
Do \(n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)⋮9\left(4\right)\)
Từ ( 1 ) ; ( 2 ) ; ( 3 ) ; ( 4 )
\(\Rightarrow n^6+n^4-2n^2⋮72\left(đpcm\right)\)
Đặt A=\(n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)
\(=n^2\left(n^4-n^2+2n^2-2\right)=n^2\left[n^2\left(n^2-1\right)+2\left(n^2-1\right)\right]\)
\(=n^2\left(n^2-1\right)\left(n^2+2\right)\)
- Nếu n = 2k (k thuộc Z) thì \(A=\left(2k\right)^2\left[\left(2k\right)^2-1\right]\left[\left(2k\right)^2+2\right]\)
\(=4k^2\left(4k^2-1\right)\left(4k^2+2\right)=8k^2\left(4k^2-1\right)\left(2k^2+1\right)⋮8\)
- Nếu n = 2k + 1 thì \(A=\left(2k+1\right)^2\left[\left(2k+1\right)^2-1\right]\left[\left(2k+1\right)^2+2\right]\)
\(=\left(4k^2+4k+1\right)\left(4k^2+4k\right)\left(4k^2+4k+3\right)\)
\(=4k\left(k+1\right)\left(4k^2+4k+1\right)\left(4k^2+4k+3\right)\)
=>\(A⋮4.2\left(4k^2+4k+1\right)\left(4k^2+4k+3\right)=8\left(4k^2+4k+1\right)\left(4k^2+4k+3\right)⋮8\) (vì k(k+1) là tích 2 số nguyên liên tiếp)
Từ 2 trường hợp trên thì A chia hết cho 8 với mọi n (1)
- Nếu n chia hết cho 3 thì A chia hết cho 3
- Nếu n không chia hết cho 3
Vì n2 là số chính phương => n2 chia 3 dư 1 (vì n không chia hết cho 3) =>n2 + 2 chia hết cho 3
Ta có: \(A=n^2\left(n^2-1\right)\left(n^2+2\right)=n\left(n-1\right)\left(n+1\right)n\left(n^2+2\right)\)
Mà n(n-1)(n+1) là tích 3 số nguyên liên tiếp =>n(n-1)(n+1) chia hét cho 3
=>\(A⋮3.3.n=9n⋮9\)
Từ 2 trường hợp trên A chia hết cho 9 với mọi n (2)
Mà (8,9) = 1 (3)
Từ (1),(2),(3) => \(A⋮72\left(đpcm\right)\)
khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự
Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7
.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91
Xong!!!