K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(m^2< =2m-1\)

=>\(m^2-2m+1< =0\)

=>\(\left(m-1\right)^2< =0\)

=>\(m-1=0\)

=>m=1

2: 

ĐKXĐ: m<>2

\(\dfrac{m+3}{m-2}>=0\)

TH1: \(\left\{{}\begin{matrix}m+3>=0\\m-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-3\\m>2\end{matrix}\right.\)

=>m>2

TH2: \(\left\{{}\begin{matrix}m+3< =0\\m-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =-3\\m< 2\end{matrix}\right.\)

=>m<=-3

6 tháng 4 2017

a)

\(\left\{{}\begin{matrix}\left(2m-1\right)^2-4\left(m^2-m\right)\ge0\left(1\right)\\\dfrac{1}{m^2-m}>0\left(2\right)\\\dfrac{2m-1}{m^2-m}>0\left(3\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow m^2-m>0\Rightarrow\left[{}\begin{matrix}m< 0\\m>1\end{matrix}\right.\) (I)

Kết hợp \(\left(2\right)\Rightarrow\left(3\right)\Leftrightarrow2m-1>0\Rightarrow m>\dfrac{1}{2}\)(II)

\(\left(1\right)\Leftrightarrow4m^2-4m+1-4m^2+4m=1\ge0\forall m\) (III)

Từ (I) (II) (III) \(\Rightarrow m>1\)

Kết luận nghiệm BPT m>1

6 tháng 4 2017

b)

\(\left\{{}\begin{matrix}\left(m-2\right)^2-\left(m+3\right)\left(m-1\right)\ge0\left(1\right)\\\dfrac{m-2}{m+3}< 0\left(2\right)\\\dfrac{m-1}{m+3}>0\left(3\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow m^2-4m+4-m^2-2m+3=-6m+7\ge0\Rightarrow m\le\dfrac{7}{6}\)(I)

\(\left(2\right)\Leftrightarrow-3< m< 2\) (2)

\(\left(3\right)\Leftrightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)(3)

Nghiệm Hệ BPT là: \(1< m\le\dfrac{7}{6}\)

6 tháng 7 2018

( 2 m   -   1 ) 2   -   4 ( m   +   1 ) ( m   -   2 )   ≥   0  ⇔ 9 ≥ 0. Bất phương trình có tập nghiệm là R.

13 tháng 3 2021

b, pt \(\Leftrightarrow\)mx - 2=0 

Nếu m=0 pt\(\Leftrightarrow\) -2=0 (vô lí)\(\Rightarrow\)m=2(loại)

Nếu m\(\ne\)0 pt có nghiệm x=\(\dfrac{2}{m}\)

 

 

 

 

13 tháng 3 2021

undefinedBạn tham khảo nhé

 

5 tháng 4 2017

a)\(\left\{{}\begin{matrix}2m-1>0\Rightarrow m>\dfrac{1}{2}\left(1\right)\\m^2-\left(m-2\right)\left(2m-1\right)< 0\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow m^2-\left(2m^2-m-4m+2\right)=-m^2+5m-2< 0\)

\(m^2-5m+2>0\Rightarrow\left[{}\begin{matrix}m< \dfrac{5-\sqrt{17}}{2}< \dfrac{1}{2}\\m>\dfrac{5+\sqrt{17}}{2}\end{matrix}\right.\)

Nghiệm hệ là

\(m>\dfrac{5+\sqrt{17}}{2}\)

b)\(\left\{{}\begin{matrix}m^2-m-2< 0\left(1\right)\\\left(2m-1\right)^2-4\left(m^2-m-2\right)\le0\left(2\right)\end{matrix}\right.\)

 

\(\left(2\right)\left(2m-1\right)^2-4\left(m^2-m-2\right)=9< 0,\forall m\)
Suy ra (2) vô nghiệm .

Kết luận hệ vô nghiệm.

 

 

9 tháng 5 2017

Em chú ý: Đầu dòng viết hoa nhé. Cảm ơn em đã trả lời bài.

5 tháng 3 2021

2.

b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)

\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)

\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)

\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)

Vậy \(m\in\left(-2;4\right)\)

5 tháng 3 2021

2.

a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m>5\)

6 tháng 4 2017

a)

\(\Leftrightarrow4m^2-4m+1-4\left(m^2-m-2\right)=9\ge0\Leftrightarrow\forall m\in R\)

b)

\(m^2-\left(2m^2+m-1\right)=-m^2-m+1< 0\)

\(\Leftrightarrow m^2+m-1>0\Rightarrow\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\Rightarrow\left[{}\begin{matrix}m< \dfrac{-1-\sqrt{5}}{2}\\m>\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

17 tháng 5 2021

1. \(\left|\frac{2x^2-x}{3x-4}\right|\ge1\) Điều kiện: \(x\ne\frac{4}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2-x}{3x-4}\ge1\\\frac{2x^2-x}{3x-4}\le-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{x^2-2x+2}{3x-4}\ge0\\\frac{x^2+x-2}{3x-4}\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>\frac{4}{3}\\x\in(-\infty;-2]U[1;\frac{4}{3})\end{cases}}\Leftrightarrow x\in(-\infty;-2]U[1;+\infty)\backslash\left\{\frac{4}{3}\right\}\)

2.\(\hept{\begin{cases}x^2\le-2x+3\left(1\right)\\\left(m+1\right)x\ge2m-1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x^2+2x-3\le0\Leftrightarrow-3\le x\le1\)

+) Nếu \(m=-1\) thì (2) vô nghiệm, suy ra \(m\ne-1\)

+) Nếu \(m>-1\) thì \(\left(2\right)\Leftrightarrow x\ge\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=1\Leftrightarrow m=2>-1\)

+) Nếu \(m< -1\)thì \(\left(2\right)\Leftrightarrow x\le\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=-3\Leftrightarrow m=-\frac{2}{5}< -1\)

Vậy \(m=\left\{\frac{-2}{5};2\right\}\)

19 tháng 5 2021

1. |2x2−x3x−4 |≥1 Điều kiện: x≠43 

⇔[

2x2−x3x−4 ≥1
2x2−x3x−4 ≤−1

⇔[

x2−2x+23x−4 ≥0
x2+x−23x−4 ≤0

⇔[

x>43 
x∈(−∞;−2]U[1;43 )

⇔x∈(−∞;−2]U[1;+∞)\{43 }

2.{

x2≤−2x+3(1)
(m+1)x≥2m−1(2)

(1)⇔x2+2x−3≤0⇔−3≤x≤1