K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 9 2021

Áp dụng hệ thức lượng:

\(AB^2=BH.BC=BH\left(BH+CH\right)\)

\(\Leftrightarrow36=BH\left(BH+6,4\right)\)

\(\Leftrightarrow BH^2+6,4BH-36=0\Rightarrow\left[{}\begin{matrix}BH=3,6\\BH=-10\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow BC=BH+CH=10\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

Áp dụng hệ thức lượng:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)

Xét ΔAHC có

I là trung điểm của AH

N là trung điểm của AC

DO đó: IN là đường trung bình của ΔAHC

Suy ra: \(IH=3cm\)

26 tháng 8 2021

Theo định lí Pytago tam giác ABH vuông tại H ta có : 

\(BH=\sqrt{AB^2-AH^2}=\sqrt{36-\left(4,8\right)^2}=\frac{18}{5}\)cm 

Xét tam giác AHB và tam giác CHA ta có : 

^AHB = ^CHA = 900

^BAH = ^HCA (cùng phụ ^HAC)

Vậy tam giác AHB ~ tam giác CHA ( g.g ) 

\(\frac{AH}{CH}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\)

\(\Rightarrow HC=\frac{AH^2}{HB}=\frac{\left(4,8\right)^2}{\frac{18}{5}}=\frac{32}{5}\)cm 

=> \(BC=HC+HB=\frac{18}{5}+\frac{32}{5}=10\)cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=\sqrt{100-36}=8\)cm 

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

16 tháng 12 2021

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm