cho tam giác abc nhọn các đường cao ad be cf cắt nhau tại h
a chứng minh bdhf và bfec là tứ giác nội tiếp
b đường tròn tâm o đường kính bc cắt fd tại k . chứng minh ek song song với AD
c chứng minh doef là tứ giác nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc BDH+góc BFH=180 độ
=>BDHF nội tiếp
b; góc ACK=1/2*sđ cung AK=90 độ
Xét ΔACK vuông tại C và ΔADB vuông tại D có
góc AKC=góc ABD
=>ΔACK đồng dạng với ΔADB
=>AC/AD=AK/AB
=>AC*AB=AD*AK
a: Xét tứ giác BDHF có
góc BDH+góc BFH=180 độ
=>BDHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
c: Xét ΔHAF vuông tại F và ΔHCD vuông tại D có
góc AHF=góc CHD
=>ΔHAF đồng đạng với ΔHCD
=>HA/HC=HF/HD
=>HA*HD=HF*HC
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HA*HD
d: Xét ΔAEF và ΔABC có
góc AEF=góc ABC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
a: Xét tứ giác BDHF có
\(\widehat{BDH}+\widehat{BFH}=180^0\)
Do đó: BDHF là tứ giác nội tiếp
Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB∼ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AB\cdot AF\)
a) Xét tứ giác BFHD có
\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối
\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔABK nội tiếp
AK là đường kính
=>ΔABK vuông tại B
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>I là trung điểm của BC
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm I của đường tròn ngoại tiếp tứ giác BFEC là trung điểm của BC
b) Xét ΔSFB và ΔSCE có
\(\widehat{FSB}\) chung
\(\widehat{SFB}=\widehat{SCE}\left(=180^0-\widehat{BFE}\right)\)
Do đó: ΔSFB∼ΔSCE(g-g)
Suy ra: \(\dfrac{SF}{SC}=\dfrac{SB}{SE}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(SE\cdot SF=SB\cdot SC\)(đpcm)