cho biểu thức A=5:(x-2)với x không bằng 2
tìm các số nguyên x để A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau a.de A la phan so thi x e z va x khac -5 cau b:ta co x-2/x+5=x+5-7/x+5 vi x+5 chia het cho x+5 nen 7 chia het cho x+5 suy ra x+5 e B(7)={7,-7,1,-1} neu x+5=-7 thi x = -12 x+5=7 thi x=2 x+5=1 thi x=-4 x+5=-1 thi x=-6
a) A là phân số ⇔ x + 5 ≠ 0 ⇔ x ≠ -5
b) A là một số nguyên ⇔ (x – 2) ⋮ ( x + 5)
Ta có: x – 2 = [(x + 5) – 7] ⋮ ( x + 5) ⇔ 7 ⋮ ( x + 5) ⇔ x + 5 là ước của 7
x + 5 ∈ { 1 ; -1 ; 7 ; -7 }
x ∈ { -4 ; -6 ; 2 ; -12 }
1.a.a+1 chia hết cho 3 thì a chia 3 dư 2
b.a-2 chia hết cho 5 thì a chia 5 dư 3
2.a,13 chia hết cho (x-1)
suy ra (x-1) thuộc Ư(13)={-13;-1;1;13}
suy ra x thuộc {-12;0;2;14}
b,x-3/x-2=x-2-1/x-2=1-1/x-2
để phân thức trên nguyên thì 1 chia hết cho x-2
suy ra x-2 thuộc {-1;1}
suy ra x=1;3
Cho biểu thức A=x-2/x+5
a)Tìm các số nguyên x để A là phân số
b)Tìm các số nguyên x để A là số nguyên
a, để x-2/x-5 là phân số thì x-2/x-5 là phân số tối giản
suy ra x-2 không chia hết cho x+5
vậy x thuộc Z
b, để x-2/x+5 là số nguyên thì x-2 chia hết cho x+5
x-2=x+5-7
suy ra x+5-7chia hết cho x+5
mà x+5 chia hết cho x+5 nên : -7 chia hết cho x+5
vậy x=
\(A=\frac{x-2}{x+5}\)
a) Để A là phân số => \(x+5\ne0\)=> \(x\ne-5\)
b) \(A=\frac{x-2}{x+5}=\frac{x+5-7}{x+5}=1-\frac{7}{x+5}\)
Để A là số nguyên => \(\frac{7}{x+5}\)là số nguyên
=> \(7⋮x+5\)
=> \(x+5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
x+5 | -7 | -1 | 1 | 7 |
x | -12 | -6 | -4 | 2 |
Vậy x thuộc các giá trị trên thì A là số nguyên
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
: là phần
Ta có : \(\frac{5}{x-2}\Rightarrow x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
( tmđk \(x\ne2;x\inℤ\))
Vậy \(x=1;7;\pm3\)