K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2024

C = \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{99.101}\)

C = \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{101}\)

C = \(\dfrac{1}{3}\) - \(\dfrac{1}{101}\)

C = \(\dfrac{98}{303}\)

22 tháng 7 2021

Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)

A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)

Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)

\(=\dfrac{1}{3}-\dfrac{1}{15}\)

\(=\dfrac{4}{15}\)

14 tháng 4 2022

\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=2\cdot\dfrac{98}{303}=\dfrac{196}{303}\)

14 tháng 4 2022

= 2/3 . 2/5 + 2/5 . 2/7 + ... + 2/99 . 2/101

= 2/3 - 2/5 + 2/5 - 2/7 + ... + 2/99 - 2/101

= 2/3 - 2/101

= 196/303

\(B=-\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{-1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{100}{101}=-\dfrac{50}{101}\)

16 tháng 5 2017

\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

\(M=2.(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99})\)

\(M=2.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)

\(M=2.\dfrac{32}{99}\)

\(M=\dfrac{64}{99}\)

10 tháng 4 2018

http://vietjack.com/giai-sach-bai-tap-toan-6/bai-95-trang-28-sach-bai-tap-toan-6-tap-2.jsp

9 tháng 5 2022

`A=2/[1.3]+2/[3.5]+2/[5.7]+.....+2/[99.101]`

`A=1-1/3+1/3-1/5+1/5-1/7+......+1/99-1/101`

`A=1-1/101=101-1/101=100/101`

9 tháng 5 2022

\(\dfrac{100}{101}\)

26 tháng 4 2022

\(B=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.100}\)

\(B=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99.100}+\dfrac{1}{99.100}\)

\(B=\dfrac{1}{3}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(B=\dfrac{1}{3}-\dfrac{2}{100}+\dfrac{1}{99}\)

\(B=\dfrac{1}{3}-\dfrac{1}{50}+\dfrac{1}{99}\)

Đến đây thì hết tính hợp lý được rồi:v

\(B=\dfrac{34}{99}-\dfrac{1}{50}\)

\(B=\dfrac{1601}{4950}\)

 

26 tháng 4 2022

101 chứ bạn

31 tháng 8 2017

Đặt :

\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+.........+\dfrac{1}{99.101}\)

\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+............+\dfrac{2}{99.101}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+............+\dfrac{1}{99}-\dfrac{1}{101}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{101}\)

\(\Leftrightarrow2A=\dfrac{98}{303}\)

\(\Leftrightarrow A=\dfrac{49}{303}\)

31 tháng 8 2017

co gi do sai sai..

11 tháng 3 2023

\(B=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\\ B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\\ B=\dfrac{1}{1}-\dfrac{1}{101}\\ B=\dfrac{101}{101}-\dfrac{1}{101}\\ B=\dfrac{100}{101}\)

11 tháng 3 2023

\(\dfrac{2}{1\cdot3}=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3}{3}-\dfrac{1}{3}=\dfrac{2}{3}\)

\(\dfrac{2}{3\cdot5}=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{15}-\dfrac{3}{15}=\dfrac{2}{15}\)

\(\dfrac{2}{5\cdot7}=\dfrac{1}{5}-\dfrac{1}{7}=\dfrac{7}{35}-\dfrac{5}{35}=\dfrac{2}{35}\)

và cứ như thế đến số cuối

 

21 tháng 6 2021

`2/(3.5)+2/(5.7)+....+2/(2015.2017)`

`=1/3-1/5+1/5-1/7+....+1/2016-1/2017`

`=1/3-1/2017=2014/6051`

21 tháng 6 2021

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2015.2017}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)

\(=\dfrac{1}{3}-\dfrac{1}{2017}\)

\(=\dfrac{2017}{6051}-\dfrac{3}{6051}=\dfrac{2014}{6051}\)

3 tháng 4 2018

a)

\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{24.25}\)

\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{24}-\dfrac{1}{25}\)

\(=\dfrac{1}{5}-\dfrac{1}{25}\)

\(=\dfrac{4}{25}\)

b)

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

3 tháng 4 2018

a) \(\dfrac{1}{5.6}=\dfrac{1}{5}-\dfrac{1}{6}\)

\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{24.25}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)b) \(\dfrac{2}{1.3}=1-\dfrac{1}{3}\)

tương tự

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)