Cho a,b không âm và a+b=1. Tìm GTNN:
\(A=\frac{2}{ab}+\frac{3}{a^2+b^2}+14\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a}{b^2+1}=\frac{a\left(b^2+1\right)-ab^2}{b^2+1}=a-\frac{ab^2}{b^2+1}\)
Nhận xét: a,b,c không âm nên theo BĐT Cô - si, ta có:
\(b^2+1\ge2\sqrt{b^2.1}=2b\)
=> \(\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\)
=> \(a-\frac{ab^2}{b^2+1}\ge a-\frac{ab}{2}\)
=> \(\frac{a}{b^2+1}\ge a-\frac{ab}{2}\)
Tương tự, ta cũng có:
\(\frac{b}{c^2+1}\ge b-\frac{bc}{2}\)
\(\frac{c}{a^2+1}\ge c-\frac{ac}{2}\)
Vậy ta suy ra
\(M=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ac}{2}\)
Mà a+b+c = 3 nên suy ra:
\(M\ge3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ac}{2}\right)\)(1)
Ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
<=> \(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
<=> \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
<=> \(a^2+b^2+c^2\ge ab+ac+bc\)
<=> \(a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3ab+3ac+3bc\)
<=> \(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
<=> \(3^2\ge3\left(ab+ac+bc\right)\)
<=> \(ab+ac+bc\le3\)
<=> \(\frac{ab+ac+bc}{2}\le\frac{3}{2}\)
<=> \(3-\frac{ab+ac+bc}{2}=3-\frac{3}{2}=\frac{3}{2}\) (2)
Từ 1 và 2 => \(M\ge\frac{3}{2}\)
Dấu bằng xảy ra <=> a=b=c=1
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :
\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)
\(\Rightarrow a+b-2\le\sqrt{8}-2\)
\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)
Do x ; y không âm , \(x^2+y^2=1\)
\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)
\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)
\(x,y\ge0\Rightarrow xy\ge0\)
Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)
\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)
\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)
\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)
\(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))
Sử dụng BĐT Svacxo ta có :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)
bài làm của e :
Áp dụng BĐT Svacxo ta có :
\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)
Tiếp tục sử dụng Svacxo thì ta được :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)
Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)
Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:
https://olm.vn/hoi-dap/detail/259605114604.html
Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1
chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)
Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)
A=\(\frac{4}{2ab}+\frac{3}{a^2+b^2}+14\)
=\(\frac{1}{2ab}+3\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+14\)
Áp dụng BĐT AM-GM cho 2 số không âm có:
\(a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\)\(2\sqrt{ab}\le1\Leftrightarrow ab\le\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{2ab}\ge2\)(1)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)ta có:\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{4}{\left(a+b\right)^2}=4\)(2)
Từ (1) và (2) =>A\(\ge\)2+3.4+14=28
Dấu "=" xảy ra\(\Leftrightarrow\)a=b=\(\frac{1}{2}\)
A=\(\frac{2}{ab}+\frac{3}{a^2+b^2}+14=\frac{1}{2ab}+\frac{3}{2ab}+\frac{3}{a^2+b^2}+14=\frac{1}{2ab}+3\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\)+14
Áp dụng bđt Cauchy Schawrz dạng Engel: \(\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{\left(1+1\right)^2}{2ab+a^2+b^2}=\frac{2^2}{\left(a+b\right)^2}=\frac{4}{1^2}=4\)(1)
Mặt khác áp dụng bđt Cô-si: \(a^2+b^2\ge2ab\Leftrightarrow a^2+b^2+2ab\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow1^2\ge4ab\Leftrightarrow2ab\le\frac{1}{2}\Leftrightarrow\frac{1}{2ab}\ge2\)(2)
Từ (1) và (2) suy ra \(A=\frac{1}{2ab}+3\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+14\ge2+3.4+14=28\)
Dấu "=" xảy ra khi a=b=1/2