cho tam giác ABC. trên cạnh AB lấy điểm E sao cho AE = 2/3 AB. Trên cạnh AC lấy điểm D sao cho AD = 1/3 AC. Nối C với E, CE cắt BD tại G. Tính tỉ số độ dài hai đoạn thẳng EG và CG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai trả lời giúp mk đi , cả lời giải và phép tính mai mk fai nộp rồi
ai giỏi thì giúp mình với mình cảm ơn rất nhiều !!!!!
Nhanh lên nhé mai mình phải nộp rồi
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
mik ko biết đây là đề ôn của cô giáo mik cũng chỉ biết làm nhưng ko ra đc mới phải lên đây hỏi chứ mik cx ko biết đề sai mik ghi đúng đề rồi ạ
a/ Xét tg ABD và tg ABC có chung đường cao từ B->AC nên
\(\frac{S_{ABD}}{S_{ABC}}=\frac{AD}{AC}=\frac{1}{3}\)
b/
Xét tg AED và tg ABD có chung đường cao từ D->AB nên
\(\frac{S_{AED}}{S_{ABD}}=\frac{AE}{AB}=\frac{2}{3}\Rightarrow S_{ABD}=\frac{3xS_{AED}}{2}\)
Mà \(\frac{S_{ABD}}{S_{ABC}}=\frac{1}{3}\Rightarrow S_{ABC}=3xS_{ABD}=\frac{3x3xS_{AED}}{2}=\frac{9x8}{2}=36cm^2\)
c/
Ta có \(\frac{AE}{AB}=\frac{2}{3}\Rightarrow\frac{BE}{AB}=\frac{1}{3}\) và \(\frac{AD}{AC}=\frac{1}{3}\Rightarrow\frac{AD}{CD}=\frac{1}{2}\)
Xét tg BDE và tg ABD có chung đường cao từ D->AB nên
\(\frac{S_{BDE}}{S_{ABD}}=\frac{BE}{AB}=\frac{1}{3}\Rightarrow S_{BDE}=\frac{S_{ABD}}{3}\)
Xét tg ABD và tg BCD có chung đường cao từ B-> AC nên
\(\frac{S_{ABD}}{S_{BCD}}=\frac{AD}{CD}=\frac{1}{2}\Rightarrow S_{BCD}=2xS_{ABD}\)
Xét tg BDE và tg BCD có chung BD nên
\(\frac{S_{BDE}}{S_{BCD}}=\) đường cao từ E->BD / đường cao từ C->BD \(=\frac{\frac{S_{ABD}}{3}}{2xS_{ABD}}=\frac{1}{6}\)
Xét tg DEG và tg CDG có chung DG nên
\(\frac{S_{DEG}}{S_{CDG}}=\)đường cao từ E->BD / đường cao từ C->BD \(=\frac{1}{6}\)
Hai tg này có chung đường cao từ D->CE nên
\(\frac{S_{DEG}}{S_{CDG}}=\frac{EG}{CG}=\frac{1}{6}\)