Phân tích đa thức thành nhân tử:
2x2 + 3881x - 17505
Có cách nào tối ưu mọi người chỉ mik với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng hệ quả của định lí Bezout cũng được :)) nhưng áp dụng cho đa thức bậc 3, 4 là chủ yếu
b: \(2x^2-7xy+3y^2+x-3y\)
\(=2x^2-6xy-xy+3y^2+x-3y\)
\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
Lời giải:
a.
Đặt $2a^2+5ab-3b^2-7b-2=(a+mb+n)(2a+pb+k)$ với $m,n,p,k$ nguyên
$\Leftrightarrow 2a^2+5ab-3b^2-7b-2=2a^2+ab(2m+p)+mpb^2+a(k+2n)+b(km+np)+kn$
Đồng nhất hệ số:
\(\left\{\begin{matrix} 2m+p=5\\ mp=-3\\ k+2n=0\\ km+np=-7\\ kn=-2\end{matrix}\right.\)
Giải hpt này ta thu được $m=3; n=1; p=-1; k=-2$
Vậy $2a^2+5ab-3b^2-7b-2=(a+3b+1)(2a-b-2)$
b. Đa thức không phân tích được thành nhân tử
b: Ta có: \(2x^2-7xy+3y^2+x-3y\)
\(=2x^2-6xy-xy+3y^2+x-3y\)
\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
Lời giải:
1.
$x^3+3x^2-16x-48=(x^3+3x^2)-(16x+48)=x^2(x+3)-16(x+3)$
$=(x+3)(x^2-16)=(x+3)(x-4)(x+4)$
2.
$4x(x-3y)+12y(3y-x)=4x(x-3y)-12y(x-3y)=(x-3y)(4x-12y)=4(x-3y)(x-3y)=4(x-3y)^2$
3.
$x^3+2x^2-2x-1=(x^3-x^2)+(3x^2-3x)+(x-1)=x^2(x-1)+3x(x-1)+(x-1)$
$=(x-1)(x^2+3x+1)$
\(2x^2+5x+3=2x^2+2x+3x+3=2x\left(x+1\right)+3\left(x+1\right)=\left(2x+3\right)\left(x+1\right)\)
\(2x^2+5x+3=2x^2+2x+3x+3=\left(2x^2+2x\right)+\left(3x+3\right)=2x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(2x+3\right)\)
ta có \(2x^2+3881x-17505=2x^2-9x+3890x-17505\)
\(=x\left(2x-9\right)+1945\left(2x-9\right)=\left(2x-9\right)\left(x+1945\right)\)
2x2+3881x-17505
= 2x2+3890x-9x-17505
=2x(x+1945)-9(x+1945)
=(x+1945)(2x-9)
Đúng thì k giúp mình nha