K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{2^{19}\cdot27^3-15\cdot4^9\cdot9^4}{6^9\cdot2^{10}+\left(-12\right)^{10}}\)

\(=\dfrac{2^{19}\cdot3^9-5\cdot3^9\cdot2^{18}}{2^{19}\cdot3^9-2^{20}\cdot3^{10}}\)

\(=\dfrac{2^{18}\cdot3^9\left(2-5\right)}{2^{19}\cdot3^9\left(1-2\cdot3\right)}\)

\(=\dfrac{1}{2}\cdot\dfrac{-3}{-5}=\dfrac{3}{10}\)

27 tháng 7 2018

kết quả cuối cùng =1/2

/ phần nha bạnhihi

nếu đúng thì tick cho mk nha

20 tháng 8 2017

=\(\dfrac{2^{19}.27^3-15.\left(-4\right)^9.9^4}{6^9.2^{10}+\left(-12\right)^{10}}\)

=\(\dfrac{2^{19}.3^9-2^{18}.3^9.5}{6^9.2^{10}+6^{10}.2^{10}}\)

=\(\dfrac{2^{18}.3^9\left(2-2.5\right)}{6^9.2^{10}\left(1+6\right)}\)

=\(\dfrac{2^{18}.3^9.\left(-8\right)}{3^9.2^{19}.7}\)

=\(\dfrac{-8}{14}=\dfrac{-4}{7}\)

20 tháng 8 2017

bạn làm sai rùi kết quả là \(\dfrac{1}{2}\) mình hỏi thầy rùi

\(H=\dfrac{2^{19}\cdot3^9\cdot5+3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot2^{10}\cdot3^9-2^{20}\cdot3^{10}}\)

\(=\dfrac{2^{19}\cdot3^9\cdot5+2^{18}\cdot3^9\cdot5}{2^{19}\cdot3^9-2^{20}\cdot3^{10}}\)

\(=\dfrac{2^{18}\cdot3^9\cdot5\cdot\left(2+1\right)}{2^{19}\cdot3^9\cdot\left(1-6\right)}\)

\(=\dfrac{1}{2}\cdot\dfrac{5\cdot3}{-5}=-\dfrac{1}{2}\cdot3=-\dfrac{3}{2}\)

22 tháng 11 2022

\(=\dfrac{2^{19}\cdot3^9\cdot5+3^{15}\cdot5\cdot2^{18}}{2^{19}\cdot3^9-2^{20}\cdot3^{10}}\)

\(=\dfrac{2^{18}\cdot3^9\cdot5\left(2+3^6\right)}{2^{19}\cdot3^9\left(1-2\cdot3\right)}=\dfrac{1}{2}\cdot\dfrac{5}{-5}\cdot\left(2+3^6\right)\)

\(=\dfrac{-731}{2}\)

24 tháng 9 2017

ngại làm wá bạn thông cảmbucminh

24 tháng 9 2017

a,\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)=\(\dfrac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{6^9.2^{10}+6^{10}.2^{10}}\)

=\(\dfrac{2^{19}.3^9+2^{18}.3^9.5}{6^9.2^{10}.\left(1+6\right)}\)=\(\dfrac{2^{18}.3^9.\left(2+5\right)}{6^9.2^{10}.7}\)=\(\dfrac{2^{18}.3^9}{6^9.2^{10}}=\dfrac{2^{10}.2^8.3^9}{2^9.3^9.2^{10}}=\dfrac{2^8}{2^8.2}=\dfrac{1}{2}\)

b, \(\dfrac{\left(\dfrac{-1}{2}\right)^3-\left(\dfrac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\dfrac{3}{4}\right)^2-\dfrac{3}{8}}=\dfrac{\dfrac{-1}{8}-\dfrac{27}{64}.4}{-2+\dfrac{9}{16}-\dfrac{3}{8}}=\dfrac{\dfrac{-1}{8}-\dfrac{27}{16}}{\dfrac{-23}{16}-\dfrac{3}{8}}=\dfrac{\dfrac{-29}{16}}{\dfrac{-29}{16}}=1\)

=\(\frac{1}{2}\)

8 tháng 5 2019

\(\frac{1}{2}nha\)

Tử số: 2^19 x (3^3)^3 x 5+15 x 4^9 x(3^2)^4

            =2^19 x3^9x5 + 15 x(2^2)^9 x 3^8

            = 2^19 x 3^9 x 5 +3 x 5 x 2^18 x 3^8

             = 2^19 x 3^9 x 5+ 3^9 x 5 x 2^18

             = 5 x 3^9 x 2^18 (2+1)

             =5 x 3^10 x 2^18

Mẫu số

= (2 x 3)^9 x 2^10 -12^10

= 2^9 x 3^9 x 2^10 - (2^2x3)^10

= 2^9 x 3^9 x 2^10 -2^20 x 3^10

= 2^19 x 3^9 - 2^20 x 3^10

= 2^19 x 3^9 (1-2 x 3)

= 2^19 x 3^9 x(-5)

Chia cả tử và mẫu ta có

(5 x 3^10 x 2^18) / (2^19 x 3^9 x (-5)) = -3/2

          

3 tháng 2 2020

\(H=\frac{2^{19}.27^3.5-15.\left(-4\right)^9.9^4}{6^9.2^{10}-\left(-12\right)^{10}}\)

\(\Rightarrow\)\(H=\frac{2^{19}.3^9.5-3.5-1.2^{18}.3^8}{2^9.3^9.2^{10}-6^{10}.2^{10}}=\frac{2^{19}.3^9.5-3^9.5-2^{18}}{2^{19}.3^9-3^{10}.2^{10}.2^{10}}=\frac{2^{19}.3^9.5-3^9.5-2^{18}}{2^{19}.3^9-3^{10}.2^{20}}\)

\(\Rightarrow H=\frac{2^{18}.3^9.5\left(2-1\right)}{2^{19}.3^9.\left(1-3.2\right)}=\frac{5}{2.\left(-5\right)}=\frac{-1}{2}\)

Vậy \(H=\frac{-1}{2}\)

24 tháng 7 2017

\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)

\(=\dfrac{2^{19}+\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.4\right)^{10}}\)

\(=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.4^{10}}\)

\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.\left(2^2\right)^{10}}\)

\(=\dfrac{2^{18}.3^9.\left(2.5\right)}{3^9.2^{19}+3^{10}.2^{20}}\)

\(=\dfrac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+3.2\right)}\)

\(=\dfrac{7}{2\left(1+6\right)}\)

\(=\dfrac{7}{2.7}\)

\(=\dfrac{1}{2}\)

a) \(5^{20}và2550^{10}\)

\(5^{20}=\left(5^2\right)^{10}=25^{10}< 2550^{10}\)

=> \(5^{20}< 2550^{10}\)

b) \(999^{10}và999999^5\)

\(999^{10}=\left(999^2\right)^5=1998^5< 999999^5\)

=> \(999^{10}< 999999^5\)

c) \(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)

\(\left(\dfrac{-1^{300}}{5}\right)=\dfrac{-1}{5}\)

\(\left(\dfrac{-1^{500}}{3}\right)=\dfrac{-1}{3}\)

\(\dfrac{-1}{5}=\dfrac{-3}{15}\)

\(\dfrac{-1}{3}=\dfrac{-5}{15}\)

=> \(\dfrac{-3}{15}>\dfrac{-5}{15}\)

=> \(\left(\dfrac{-1^{300}}{5}\right)>\left(\dfrac{-1^{500}}{3}\right)\)

20 tháng 8 2017

thank you very much