K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 5 2021

\(B=\frac{x}{1-x}+\frac{5}{x}=\frac{x-1}{1-x}+\frac{5}{x}+\frac{1}{1-x}=-1+\frac{\left(\sqrt{5}\right)^2}{x}+\frac{1^2}{1-x}\)

\(\ge-1+\frac{\left(\sqrt{5}+1\right)^2}{x+1-x}=5+2\sqrt{5}\)

Dấu \(=\)xảy ra khi \(\frac{\sqrt{5}}{x}=\frac{1}{1-x}\Leftrightarrow x=\frac{5-\sqrt{5}}{4}\).

\(B=\frac{x}{1-x}+\frac{5}{x}\)

\(=\frac{x}{1-x}+\frac{5-5x+5x}{x}\)

\(=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+\frac{5x}{x}\)

\(=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\)

Có : \(0< x< 1\)

\(\Rightarrow\frac{x}{1-x}>0\)\(\frac{5\left(1-x\right)}{x}>0\)

Áp dụng BĐT Cosi cho 2 số dương , có :

\(\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}\)

\(\Leftrightarrow\frac{1}{1-x}+ \frac{5\left(1-x\right)}{x}\ge2\sqrt{5}\)

\(\Rightarrow\frac{1}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{5}+5\)

\(\Rightarrow B\ge2\sqrt{5}+5\)

Vậy GTNN của \(B=2\sqrt{5}+5\)khi

\(\frac{x}{1-x}=\frac{5\left(1-x\right)}{x}\)

\(\Leftrightarrow x^2=5\left(1-x\right)^2\)

\(\Leftrightarrow x^2=5x^2-10x+5\)

\(\Leftrightarrow4x^2-10x+5=0\Leftrightarrow x=\frac{5-\sqrt{5}}{4}\)

30 tháng 9 2020

hơi ngán dạng này :((((

a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

b,

\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)

c,

\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,

\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))

2 tháng 10 2020

cảm ơn bạn nhìuuu 💞

16 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=5\end{matrix}\right.\\ b,\Leftrightarrow\left(x-4\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\\ c,\Leftrightarrow\left(x+1\right)\left(3x-6\right)=0\\ \Leftrightarrow3\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow\left(x-3\right)\left(5x-10\right)=0\\ \Leftrightarrow5\left(x-2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

16 tháng 10 2021

a) \(\left(x+8\right)\left(x-5\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x+8=0\\x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-8\\x=5\end{matrix}\right.\)

b) \(x\left(x-4\right)+5\left(x-4\right)=0\) \(\Rightarrow\left(x-4\right)\left(x+5\right)=0\)

     \(\Rightarrow\left[{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)

c) \(3x\left(x+1\right)-6\left(x+1\right)=0\) \(\Rightarrow\left(3x-6\right)\left(x+1\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}3x-6=0\\x+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

d) \(5x\left(x-3\right)+10\left(3-x\right)=0\) \(\Rightarrow5x\left(x-3\right)-10\left(x-3\right)=0\)

     \(\Rightarrow\left(5x-10\right)\left(x-3\right)=0\)

     \(\Rightarrow\left[{}\begin{matrix}5x-10=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

 

21 tháng 6 2017

a, \(A=x^2+10x+25\)

\(A=\left(x+5\right)^2\)

Thay \(x=-5\) và A ta có:

\(\left(-5+5\right)^2=0^2=0\)

b, \(B=\left(x+5\right)\left(x-5\right)\)

\(B=x^2-25\)

Thay \(x=0\) vào B ta có:

\(0^2-25=0-25=-25\)

c, \(C=36-12x+x^2\)

\(C=x^2-6x-6x+36\)

\(C=\left(x-6\right)^2\)

Thay x=0 vào C ta có:

\(\left(0-6\right)^2=\left(-6\right)^2=36\)

d, \(D=4x^2+12x+9\)

\(D=4x^2+6x+6x+9\)

\(D=2x.\left(2x+3\right)+3x.\left(2x+3\right)\)

\(D=\left(2x+3\right)^2\)

Thay \(x=1\) vào D ta có:

\(\left(2.1+3\right)^2=\left(2+3\right)^2=5^2=25\)

Chúc bạn học tốt!!!

21 tháng 6 2017

cứ thay vào mà tính thoy, kho khăn j đâu

31 tháng 10 2021

\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

25 tháng 7 2015

rút gọn các đa thức bằng cách nhân chúng với nhau rồi thay số vào là tính được mà

3 tháng 10 2020

a) A = (x - 3)(x + 7) - (2x - 5)(x - 1)

       = x(x + 7) - 3(x + 7) - 2x(x - 1) + 5(x - 1)

      = x2 + 7x - 3x - 21 - 2x2 + 2x + 5x - 5

      = (x2 - 2x2) + (7x - 3x + 2x + 5x) + (-21 - 5) = -x2 + 11x - 26 = -(x2 - 11x + 26)

+) Với x = 0 thì -(02 - 11.0 + 26) = -(0 - 0 + 26) = -26

+) Với x = 1 thì -(12 - 11.1 + 26) = -(1 - 11 + 26) = -16

b) B = (3x + 5)(2x - 1) + (4x - 1)(3x + 2)

       = 3x(2x - 1) + 5(2x - 1) + 4x(3x + 2) - 1(3x + 2)

       = 6x2 - 3x + 10x - 5 + 12x2 + 8x - 3x - 2

       = (6x2 + 12x2) + (-3x + 10x + 8x - 3x)+ (-5 - 2) = 18x2 + 12x - 7

|x| = 2 => x = 2 hoặc x = -2

Với x = 2 thì 18.22 + 12.2 - 7 = 18.4 + 24 - 7 = 72 + 24 - 7 = 89

Với x = -2 thì 18.(-2)2 + 12.(-2) - 7 = 18.4 + (-24) - 7 = 18.4 - 24 - 7 = 41

c) C = (2x + y)(2z + y) + (x - y)(y - z)

= 2x(2z + y) + y(2z + y) + x(y - z) - y(y- z)

= 4xz + 2xy + 2zy + y2 + xy - xz - y2 + yz

= 4xz + 2xy + 2zy + (y2 - y2)  +xy - xz + yz

= 4xz + 3xy + 3zy 

Với x = 1,y = 1,z = 1

= 4.1.1 + 3.1.1 + 3.1.1 = 4 + 3 + 3 = 10

27 tháng 6 2021

`A=(9(x-2)+18)/(2-x)+2/x`

`=-9+18/(2-x)+2/x`

`=-9+2(9/(2-x)+1/x)`

Áp dụng bđt cosi-schwarts ta có:

`9/(2-x)+1/x>=(3+1)^2/(2-x+x)=8`

`=>A>=16-9=7`

Dấu "=" xảy ra khi `3/(2-x)=1/x`

`<=>3x=2-x`

`<=>4x=2<=>x=1/2(tm)`

b

`y=x/(1-x)+5/x`

`=(x-1+1)/(1-x)+5/x`

`=1/(1-x)+5/x-1`

Áp dụng cosi-schwarts ta có:

`1/(1-x)+5/x>=(1+sqrt5)^2/(1-x+x)=(1+sqrt5)^2=6+2sqrt5`

`=>y>=5+2sqrt5`

Dấu "=" xảy ra khi `1/(1-x)=sqrt5/x`

`<=>x=sqrt5-sqrt5x`

`<=>x(1+sqrt5)=sqrt5`

`<=>x=sqrt5/(sqrt5+1)=(sqrt5(sqrt5-1))/(5-1)=(5-sqrt5)/4`

`c)C=2/(1-x)+1/x`

Áp dụng bđt cosi schwarts ta có:

`C>=(sqrt2+1)^2/(1-x+x)=3+2sqrt2`

Dấu "=" xảy ra khi `sqrt2/(1-x)=1/x`

`<=>sqrt2x=1-x`

`<=>x(sqrt2+1)=1`

`<=>x=1/(sqrt2+1)=(sqrt2-1)/(2-1)=sqrt2-1`

27 tháng 6 2021

cho hỏi là câu a sao lại thế ở mấy dòng đầu ạ