K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 5 2021

\(B=\frac{x}{1-x}+\frac{5}{x}=\frac{x-1}{1-x}+\frac{5}{x}+\frac{1}{1-x}=-1+\frac{\left(\sqrt{5}\right)^2}{x}+\frac{1^2}{1-x}\)

\(\ge-1+\frac{\left(\sqrt{5}+1\right)^2}{x+1-x}=5+2\sqrt{5}\)

Dấu \(=\)xảy ra khi \(\frac{\sqrt{5}}{x}=\frac{1}{1-x}\Leftrightarrow x=\frac{5-\sqrt{5}}{4}\).

\(B=\frac{x}{1-x}+\frac{5}{x}\)

\(=\frac{x}{1-x}+\frac{5-5x+5x}{x}\)

\(=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+\frac{5x}{x}\)

\(=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\)

Có : \(0< x< 1\)

\(\Rightarrow\frac{x}{1-x}>0\)\(\frac{5\left(1-x\right)}{x}>0\)

Áp dụng BĐT Cosi cho 2 số dương , có :

\(\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}\)

\(\Leftrightarrow\frac{1}{1-x}+ \frac{5\left(1-x\right)}{x}\ge2\sqrt{5}\)

\(\Rightarrow\frac{1}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{5}+5\)

\(\Rightarrow B\ge2\sqrt{5}+5\)

Vậy GTNN của \(B=2\sqrt{5}+5\)khi

\(\frac{x}{1-x}=\frac{5\left(1-x\right)}{x}\)

\(\Leftrightarrow x^2=5\left(1-x\right)^2\)

\(\Leftrightarrow x^2=5x^2-10x+5\)

\(\Leftrightarrow4x^2-10x+5=0\Leftrightarrow x=\frac{5-\sqrt{5}}{4}\)

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

Ta có : \(\frac{2}{x}=1+\left(\frac{\left(2-x\right)}{x}\right)\)

Nếu \(0< x< 2\)

Áp dụng BĐT cô si ta có :

\(B=\left[\frac{9x}{\left(2-x\right)}\right]+\frac{2}{x}\)

\(=\left[\frac{9x}{\left(2-x\right)}\right]+\frac{\left(2-x\right)}{x+1}\ge2\sqrt{9}+1=7\)

\(\Rightarrow GTNN=7\)

Dấu ''='' xảy ra khi \(\frac{9x}{\left(2-x\right)}=\frac{\left(2-x\right)}{x}\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Bmin=7\)khi \(x=\frac{1}{2}\)

7 tháng 4 2017

bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra

bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1

Áp dụng bđt AM-GM , ta có P >/  4 =>minP=4

đẳng thức xảy ra khi đồng thời  x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé

7 tháng 1 2017

\(A=\frac{x^2}{x-1}< 0\Rightarrow x>1\)

\(A-4=\frac{x^2}{x-1}-4=\frac{x^2-4x+4}{x-1}=\frac{\left(x-2\right)^2}{\left(x-1\right)}\ge0\\ \) khi x>1

\(\Rightarrow A\ge4\)

GTNN=4 khi x=2

12 tháng 3 2019

\(y=\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\)

Áp dụng BĐT Cô - si ta có :

\(\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}\ge2\sqrt{\frac{5x\left(1-x\right)}{x\left(1-x\right)}}=2\sqrt{5}\)

\(\Rightarrow y\ge5+2\sqrt{5}\)

Dấu \("="\) xảy ra khi \(x^2=5x^2-10x+5\Leftrightarrow4x^2-10x+5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\frac{5+\sqrt{5}}{4}\\x_2=\frac{5-\sqrt{5}}{4}\end{matrix}\right.\)