tìm số tự nhiên k để k+1;k+3;k+5;...;k+19 có nhiều nhất số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu k > 1 thì 3k có ít nhất ba ước là 1, 3, k; nghĩa là nếu k > 1 thì 3k là một hợp số. Do đó để 3k là một số nguyên tố thì k = 1.
b) ĐS: k = 1.
a) Nếu k > 1 thì 3k có ít nhất ba ước là 1, 3, k; nghĩa là nếu k > 1 thì 3k là một hợp số. Do đó để 3k là một số nguyên tố thì k = 1.
b) ĐS: k = 1.
Xét K=0=>3k=0(loại)
Xét K=1=>3k(thỏa mãn)
Xét k>1=>3k có nhiều hơn 2 ước (loại)
=> k=1
Tương tự với câu 7k
xét k=0=>3k=0(loại)
xét k=1=>3k=3(thỏa mãn)
xét k>1=>.3k có nhiều hơn 2 ước(loại)
=>k=1
tương tự với câu 7k
a) Nếu k > 1 thì 3k có ít nhất ba ước là 1, 3, k; nghĩa là nếu k > 1 thì 3k là một hợp số. Do đó để 3k là một số nguyên tố thì k = 1.
b) ĐS: k = 1
a) \(k=1\) vì nếu \(k>1\) thì \(3k⋮3\) \(\rightarrow\)không phải là số nguyên tố
b) \(k=1\) vì nếu \(k>1\) thì \(7k⋮7\) \(\rightarrow\) không phải là số nguyên tố
KIÚ TUI :((((
-Xét k=0 thì sẽ có tất cả 6 số nguyên tố bao gồm:3,5,7,11,13,17
-Xét k=1 thì sẽ có tất cả 0 số nguyên tố
-Xét k=2 thì sẽ có tất cả 7 số nguyên tố bao gồm:3,5,7,11,13,17,19
-Xét k=3 thì sẽ có tất cả 1 số nguyên tố là 7
-Xét k>3 thì có 2 trường hợp:
+Trường hợp 1:k=3n+1 thì sẽ có tất cả 7 số nguyến tố bao gồm:3n+2,3n+4,3n+4,3n+8,3n+10,3n+14,3n+16,3n+20
+Trường hợp 2:k=3n+2 thì sẽ có tất cả 6 số nguyên tố bao gồm:3n+5,3n+7,3n+11,3n+13,3n+17,3n+19
⇒k ϵ {2;3n+1}
Vậy:...