K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
5 tháng 3

\(\dfrac{2-x}{16}=-\dfrac{4}{x-2}\left(x\ne2\right)\\ \Rightarrow\dfrac{x-2}{16}=\dfrac{4}{x-2}\\ \Rightarrow\left(x-2\right)^2=16.4=64\\ \Rightarrow\left[{}\begin{matrix}x-2=8\\x-2=-8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=10\\x=-6\end{matrix}\right.\left(TMDK\right)\)

Vậy x thuộc {10; -6}

5 tháng 3

\(\dfrac{2-x}{16}=\dfrac{\left(-4\right)}{x-2}\)

\(\Rightarrow\dfrac{x-2}{16}=\dfrac{4}{x-2}\)

\(\Rightarrow\left(x-2\right)\cdot\left(x-2\right)=16\cdot4\)

\(\Rightarrow\left(x-2\right)^2=64\)

\(\Rightarrow\left(x-2\right)^2=8^2\)

\(\Rightarrow\left[{}\begin{matrix}x-2=8\\x-2=-8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=8+2\\x=-8+2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-6\end{matrix}\right.\)

\(\Rightarrow\) Vậy \(x\in\left\{10;-6\right\}\)

`#040911`

a,

\(\dfrac{1}{2}\cdot\left(x-4\right)-\dfrac{1}{4}\cdot\left(x-\dfrac{4}{3}\right)=2\cdot\left(x-\dfrac{1}{2}\right)\)

\(\Rightarrow\dfrac{1}{2}x-2-\dfrac{1}{4}x+\dfrac{1}{3}=2x-1\\\Rightarrow\left(\dfrac{1}{2}x-\dfrac{1}{4}x-2x\right)=2-\dfrac{1}{3}-1\\ \Rightarrow-\dfrac{7}{4}x=\dfrac{2}{3}\\ \Rightarrow x=\dfrac{2}{3}\div\left(-\dfrac{7}{4}\right)\\ \Rightarrow x=-\dfrac{8}{21}\)

Vậy, \(x=-\dfrac{8}{21}\)

b,

\(\dfrac{3}{4}-\left(x-\dfrac{1}{2}\right)^2=-\dfrac{11}{2}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{3}{4}-\left(-\dfrac{11}{2}\right)\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{25}{4}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\left(\pm\dfrac{5}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}+\dfrac{1}{2}\\x=-\dfrac{5}{2}+\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy, \(x\in\left\{-2;3\right\}\)

c,

\(\dfrac{3}{16}+1\dfrac{1}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\\ \Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\div\dfrac{17}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{17}\)

Bạn xem lại đề có sai kh nhỉ?

31 tháng 8 2023

c) \(\dfrac{3}{16}+\dfrac{1}{\dfrac{1}{16}}\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)

\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\)

\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\)

\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}:16\)

\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{256}=\left(\dfrac{3}{16}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{3}{16}\\x-\dfrac{2}{3}=-\dfrac{3}{16}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{16}+\dfrac{2}{3}\\x=-\dfrac{3}{16}+\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{41}{48}\\x=\dfrac{23}{48}\end{matrix}\right.\)

1: =(x+y-3x)(x+y+3x)

=(-2x+y)(4x+y)

2: =(3x-1-4)(3x-1+4)

=(3x+3)(3x-5)

=3(x+1)(3x-5)

3: =(2x)^2-(x^2+1)^2

=-[(x^2+1)^2-(2x)^2]

=-(x^2+1-2x)(x^2+1+2x)

=-(x-1)^2(x+1)^2

4: =(2x+1+x-1)(2x+1-x+1)

=3x(x+2)

5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]

=(2x^2+2)*4x

=8x(x^2+1)

6: =(5x-5y)^2-(4x+4y)^2

=(5x-5y-4x-4y)(5x-5y+4x+4y)

=(x-9y)(9x-y)

7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)

=(x^2+2xy+y^2)(x^2-y^2)

=(x+y)^3*(x-y)

8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)

=[(x-2y)^2-4][(x+2y)^2-36]

=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)

Bài 2: 

a: Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)

\(=\left(x^2-4\right)\left(x^2+4\right)\)

\(=x^4-16\)

b: Ta có:\(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3+y^3\)

Bài 1: 

Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x+1\right)\left(x+3\right)+3x^2=0\)

\(\Leftrightarrow x^3+64-x\left(x^2+4x+3\right)+3x^2=0\)

\(\Leftrightarrow x^3+64-x^3-4x^2-3x+3x^2=0\)

\(\Leftrightarrow-x^2-3x+64=0\)

\(\Leftrightarrow x^2+3x-64=0\)

\(\text{Δ}=3^2-4\cdot1\cdot\left(-64\right)=265\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{265}}{2}\\x_2=\dfrac{-3+\sqrt{265}}{2}\end{matrix}\right.\)

26 tháng 8 2023

\(16-x^2\)

\(=\left(4-x\right)\left(4+x\right)\)

\(---\)

\(16-3x+1^2\) (kt lại đề bài nhé)

\(x^4y^4+4x^2y^2+4\)

\(=\left[\left(xy\right)^2\right]^2+2\cdot\left(xy\right)^2\cdot2+2^2\)

\(=\left[\left(xy\right)^2+2\right]^2=\left(x^2y^2+2\right)^2\)

\(---\)

\(y^2-4y+4-x^2\)

\(=y^2-2\cdot y\cdot2+2^2-x^2\)

\(=\left(y-2\right)^2-x^2\)

\(=\left(y-2-x\right)\left(y-2+x\right)\)

a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)

\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)

\(\Leftrightarrow24x=-13\)

hay \(x=-\dfrac{13}{24}\)

13 tháng 11 2015

h) \(=\frac{x+1}{32}\)

31 tháng 1 2016

câu hỏi tương tự