K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
4 tháng 3

a) \(P=\left(\dfrac{x^2-2}{x^2+2x}+\dfrac{1}{x+2}\right):\dfrac{x+1}{x}\left(x\ne\left\{0;-2;-1\right\}\right)\\ =\left[\dfrac{x^2-2}{x\left(x+2\right)}+\dfrac{1}{x+2}\right].\dfrac{x}{x+1}\\ =\dfrac{x^2-2+x}{x\left(x+2\right)}.\dfrac{x}{x+1}\\ =\dfrac{\left(x+2\right)\left(x-1\right)}{x\left(x+2\right)}.\dfrac{x}{x+1}\\ =\dfrac{x-1}{x+1}\)

b) \(P=\dfrac{5}{2}\Rightarrow\dfrac{x-1}{x+1}=\dfrac{5}{2}\\ \Rightarrow2\left(x-1\right)=5\left(x+1\right)\\ \Leftrightarrow2x-2=5x+5\\ \Leftrightarrow5x-2x=-2-5\\ \Leftrightarrow3x=-7\\ \Leftrightarrow x=-\dfrac{7}{3}\left(TMDK\right)\)

Vậy : x=-7/3 thì P=5/2

c) \(P=\dfrac{x-1}{x+1}=\dfrac{x+1-2}{x+1}\\ =1-\dfrac{2}{x+1}\)

Để P nhận gt nguyên => 2/x+1 đạt gt nguyên

=> 2 chia hết cho x+1

=> x+1 thuộc Ư(2)={1;-1;2;-2}

=> x thuộc {0;-2;1;-3}

Đối chiếu đk : x khác {0;-2;-1}

Kết luận : x thuộc {1;-3} là 2 giá trị nguyên của x thỏa mãn P nguyên

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2}{x^2-4}\)

12 tháng 12 2021

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)

8 tháng 12 2021

a) \(A=\dfrac{x+2+x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-x+1}{\left(x-2\right)\left(x+2\right)}\)

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2}{x^2-4}\)

8 tháng 12 2021

a)B =  \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)

\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)

\(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)

\(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)

b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)

Thay x = -4 vào B, ta có:

B = \(\dfrac{-4.3}{-4+3}=12\)

c) Để B = \(\dfrac{-3}{5}\)

<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)

<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)

d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên

<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)

x+3-9-3-1139
x-12(C)-6(C)-4(C)-2(C)0(C)6(C)

 

a: ĐKXĐ: x<>-1

b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)

\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)

c: P=2

=>x^2-2x=2x+2

=>x^2-4x-2=0

=>\(x=2\pm\sqrt{6}\)

29 tháng 11 2021

undefinedundefinedundefined

a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

2 tháng 9 2021

mình cảm ơn!