K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

18 tháng 8 2017

 

a/ Xét tam giác AMC và tam giác BMD : AM = MD (gt) ;\(\widehat{AMC}\)= \(\widehat{DMB}\) (đối đỉnh) ; BM = BC (vì là tđ BC)

\(\Rightarrow\)  Tam giác AMC = tam gaics DMB (c-g-c)

b/ Ta có : \(\widehat{MBD}\)\(\widehat{MCA}\)(câu a/) và \(\widehat{ABC}\)\(\widehat{ABC}\)\(=\) 90 độ (do tam giác ABC vuông)\(\Rightarrow\) \(\widehat{ABC}\)\(\widehat{MBD}\)

\(=\)90 độ hay \(\widehat{ABD}\)\(=\)90 độ

c/Vì AM là đường trung tuyến của BC trong tam giác vuông ABC(gt) \(\Rightarrow\)AM \(=\)1/2BC

26 tháng 2 2015

1/Giả sử trong 1 tam giác có 2 hóc tù thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ

   =>trong 1 tam giác chỉ có duy nhất 1 góc tù

2/Trong 1 tam giác nếu góc nhỏ nhất bằng 60 độ thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ

  => trong một tam giác góc nhỏ nhất không thể lớn hơn 60 độ

3/Xét tam giác AMB = tam giác AMC (c.c.c)

  => góc BMA = góc CMA

  Mặt khác góc BMA + góc CMA = 180 độ

  => góc BMA = góc CMA = 90 độ

  => AM vuông góc BC

  => AM là đường cao của tam giác hạ từ đỉnh A

  Tam giác BMA = tam giác CMA

  => góc BAM = góc CAM

  => AM là tia phân giác của góc A