Cho tam giác ABC có goc A tù và AM là đường trung tuyến .Chứng minh rằng AM < \(\frac{1}{2}BC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
a/ Xét tam giác AMC và tam giác BMD : AM = MD (gt) ;\(\widehat{AMC}\)= \(\widehat{DMB}\) (đối đỉnh) ; BM = BC (vì là tđ BC)
\(\Rightarrow\) Tam giác AMC = tam gaics DMB (c-g-c)
b/ Ta có : \(\widehat{MBD}\)= \(\widehat{MCA}\)(câu a/) và \(\widehat{ABC}\)+ \(\widehat{ABC}\)\(=\) 90 độ (do tam giác ABC vuông)\(\Rightarrow\) \(\widehat{ABC}\)+ \(\widehat{MBD}\)
\(=\)90 độ hay \(\widehat{ABD}\)\(=\)90 độ
c/Vì AM là đường trung tuyến của BC trong tam giác vuông ABC(gt) \(\Rightarrow\)AM \(=\)1/2BC
1/Giả sử trong 1 tam giác có 2 hóc tù thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ
=>trong 1 tam giác chỉ có duy nhất 1 góc tù
2/Trong 1 tam giác nếu góc nhỏ nhất bằng 60 độ thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ
=> trong một tam giác góc nhỏ nhất không thể lớn hơn 60 độ
3/Xét tam giác AMB = tam giác AMC (c.c.c)
=> góc BMA = góc CMA
Mặt khác góc BMA + góc CMA = 180 độ
=> góc BMA = góc CMA = 90 độ
=> AM vuông góc BC
=> AM là đường cao của tam giác hạ từ đỉnh A
Tam giác BMA = tam giác CMA
=> góc BAM = góc CAM
=> AM là tia phân giác của góc A