-1<=a,b,c<=5, a+b+c=5. Tìm gtln A=a*2+b*2+c*2+1989
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
W.L.O.G: \(a\ge b\ge c\Rightarrow2\ge a\ge\frac{a+b+c}{3}=1\Rightarrow\left(a-2\right)\left(a-1\right)\le0\)
\(\therefore a^2+b^2+c^2\le a^2+\left(b+c\right)^2=2\left(a-1\right)\left(a-2\right)+5\le5\)
Equality holds when \(\left(a;b;c\right)=\left(2;1;0\right)\) and ..
Ta có: a2 + b2 > 2ab, b2 + c2 > 2bc, c2 + a2 > 2ca
=> 2(a2 + b2 + c2) >= 2(ab + bc + ca)
=>3(a2 + b2 + c2) >= (a + b + c)2
=> a2 + b2 + c2 >= \(\frac{\text{(a + b + c)}^2}{3}\)
=> a2 + b2 + c2 >= 3
Dâu = xảy ra khi: a = b = c = 1
1) Đặt P = (a-1)/a +(b-1)/b+(c-4)/c
Dễ thấy P = 3 - (1/a + 1/b + 4/c)
Áp dụng BĐT Bu-nhi-a-cốp-xki :
(1/a + 1/b + 4/c)(a + b + c) <= [căn(1/a).căn a + căn(1/b).căn b + căn(4/c).căn c]^2 = (1 + 1 + 2)^2 = 16
=> 1/a + 1/b + 4/c <= 16/6 = 8/3
Suy ra : P >= 3 - 8/3 = 1/3
Min P = 3 <=> a = b = 3/2 và c = 3
2) Đặt P = (a+1)/[√(a⁴+a+1) -a²] = {(a + 1).[√(a⁴+a+1) + a²]} / (a^4 + a + 1 - a^2) = (a + 1).[√(a⁴+a+1) + a²]/(a + 1) = √(a⁴+a+1) + a² (nhân liên hợp)
Ta có : 4a^2 + a√2 -√2 = 0
=> a^2 = (√2 - a√2)/4 = (1 - a)/(2√2)
=> a^4 = (1 - 2a + a^2)/8
Do đó P = √[(1 - 2a + a^2)/8 + a + 1] + (1 - a)/(2√2) = √[(a^2 + 6a + 9)/8] + (1 - a)/(2√2) = (a + 3)/(2√2) + (1 - a)/(2√2) = √2 (đpcm)
1.Theo đề, ta có:
|x|>=0
2/|x|<=2
x+2/|x|<=x+2
Nên GTLN của x+2/|x| là x+2 khi:
x=1(vì x khác 0)
Vậy GTLN của (x+2)/|x| là 1+2=3 khi x=1
Các bạn vào đọc câu hỏi của Nguyễn Đức Kiên giúp mình nhé:)
vì 0<a<1 ;0<b<2 ;0<c<3
=> 1-a > 0 <=> 0<\(\sqrt{1-a}\) < 1
=> 0 <\(\dfrac{\sqrt{1-a}}{a}\) ≤ 1 (1)
c/m tương tự với b,c
=> 0 < \(\dfrac{\sqrt{2-b}}{b}\) ≤ 2 (2)
và 0 < \(\dfrac{\sqrt{3-c}}{c}\) ≤ 3 (3)
Cộng các vế của bđt với nhau
=> 0 < \(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\) ≤ 6
Vậy GTLN của A là 6