CÂU 11 GIÚP MÌNH VỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 11 tiền nước phải là rất lớn chứ ko phải rất đắt đúng ko bạn?
Bài 10: A
Bài 11:
Áp dụng hệ thức về cạnh và góc trong tam giác vào tam giác vuông, ta được:
AC = AB.tan\(^{50^0}\) = 21.tan\(^{50^0}\) \(\approx\) 25
BC = \(\dfrac{AB}{\sin C}\)= \(\dfrac{21}{sin40^0}\)\(\approx\)33
BD = \(\dfrac{AB}{\cos25^0}\)=\(\dfrac{21}{\cos25^0}\)\(\approx\)23
Gọi số p, số n, số e của nguyên tử E là p, n, e
Ta có hệ phương trình
\(\left\{{}\begin{matrix}p+e+n=34\\n-e=1\\p=e\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}p=e=11\\n=12\end{matrix}\right.\)
1D 2B 3C 4A 5A 6C 7A 8A 9B 10A 11C 12D 13D 14D 15A 16D 17A 18C 19C 20D 21D 22C 23C 24A 25B 26C 27D 28B 29C
Câu 10:
$\sin ^2x=0\Leftrightarrow \sin x=0$
$\Rightarrow x=k\pi$ với $k$ nguyên.
Trong các khoảng đã cho chỉ có khoảng ở đáp án A chứa $k\pi$ với $k$ nguyên.
Câu 11:
PT\(\Leftrightarrow 2\sin x\cos x-\sin x-2+4\cos x=0\)
\(\Leftrightarrow 2\cos x(\sin x+2)-(\sin x+2)=0\)
\(\Leftrightarrow (2\cos x-1)(\sin x+2)=0\)
Vì $\sin x\geq -1$ nên $\sin x+2\geq 1>0$
$\Rightarrow 2\cos x-1=0$
$\Leftrightarrow \cos x=\frac{1}{2}=\cos \frac{\pi}{3}$
$\Rightarrow x=\frac{\pi}{3}+2k\pi$ hoặc $x=-\frac{\pi}{3} +2k\pi$ với $k$ nguyên.
Đáp án B.
Lời giải:
$\widehat{ABC}=180^0-\widehat{BAC}-\widehat{ACB}=180^0-90^0-30^0=60^0$
$\widehat{ABE}=\widehat{ABC}:2=60^0:2=30^0$
Đáp án B.