\(\dfrac{12345}{10000}\) và \(\dfrac{19765}{13478}\) rút gọn thì số nào lớn hơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Các phân số tối giản là \(\dfrac{1}{3};\dfrac{4}{7};\dfrac{72}{73}\) vì ƯCLN(1;3)=1; ƯCLN(4;7)=1; ƯCLN(72;73)=1
b:
Các phân số rút gọn được là
\(\dfrac{8}{12}=\dfrac{8:4}{12:4}=\dfrac{2}{3}\)
\(\dfrac{30}{36}=\dfrac{30:6}{36:6}=\dfrac{5}{6}\)
\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2.\left(\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\)
\(=\left(\dfrac{1-x}{2\sqrt{x}}\right)^2.\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\dfrac{\left(1-x\right)^2}{2\sqrt{x}}.\dfrac{-4\sqrt{x}}{-\left(1-x\right)}\)
\(=\left(1-x\right).2\sqrt{x}\)
\(=2\sqrt{x}-2x\sqrt{x}\)
a)
\(P=\left(\dfrac{b-a}{\sqrt{b}-\sqrt{a}}-\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}\right):\dfrac{\left(\sqrt{b}-\sqrt{a}\right)^2+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)
\(=\left[\sqrt{b}+\sqrt{a}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]:\dfrac{b-\sqrt{ab}+a}{\sqrt{a}+\sqrt{b}}\)
\(=\left(\sqrt{b}+\sqrt{a}-\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\right).\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)
\(=\dfrac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)\(=\dfrac{\sqrt{ab}}{a-\sqrt{ab}+b}\)
b) \(P=\dfrac{\sqrt{ab}}{a-\sqrt{ab}+b}=\dfrac{\sqrt{ab}}{\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b}\)
Vì \(\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b>0;\forall a\ge0;b\ge0;a\ne b\)
\(\sqrt{ab}\ge0\)\(\forall a\ge0;b\ge0\)
\(\Rightarrow P=\dfrac{\sqrt{ab}}{\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b}\ge0\)
Vậy...
a) Đặt \(ƯCLN\left(5a+3,7a+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}5a+3⋮d\\7a+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}35a+21⋮d\\35a+20⋮d\end{matrix}\right.\)
\(\Rightarrow\left(35a+21\right)-\left(35a+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(5a+3,7a+4\right)=1\) hay phân số \(\dfrac{5a+3}{7a+4}\) là phân số tối giản. Thế thì phân số này không thể rút gọn cho nguyên nào khác 1.
b) \(A=\dfrac{5a+3}{7a+4}\)
\(A=\dfrac{\dfrac{5}{7}\left(7a+4\right)+\dfrac{1}{7}}{7a+4}\)
\(A=\dfrac{5}{7}+\dfrac{1}{7\left(7a+4\right)}\)
Nếu \(a< 0\) thì \(A< \dfrac{5}{7}\) còn nếu \(a\ge0\) thì \(A>\dfrac{5}{7}\). Do đó ta chỉ cần tìm giá trị lớn nhất của A khi \(a>0\). Để A lớn nhất thì \(7a+4\) nhỏ nhất hay \(a=0\). Vậy để phân số A lớn nhất thì \(a=0\)
a: Khi x=6 thì \(A=\dfrac{4}{6-3}=\dfrac{4}{3}\)
b: \(B=\dfrac{4x}{x^2-9}-\dfrac{x-3}{x+3}\)(ĐKXĐ: \(x\notin\left\{3;-3\right\}\))
\(=\dfrac{4x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x-3}{x+3}\)
\(=\dfrac{4x-\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{4x-x^2+6x-9}{\left(x+3\right)\left(x-3\right)}=\dfrac{-x^2+10x-9}{\left(x+3\right)\left(x-3\right)}\)
a: Ta có: \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{\sqrt{x}-1+1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-1}{1}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{x+4}{\sqrt{x}}\)
b: Để A=5 thì \(x+4=5\sqrt{x}\)
\(\Leftrightarrow x=16\)
a. \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1-\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{-\sqrt{x}}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{5}{\sqrt{x}}=\dfrac{x-1+5}{\sqrt{x}}=\dfrac{x+4}{\sqrt{x}}\)
b. \(A=5\Leftrightarrow\dfrac{x+4}{\sqrt{x}}=5\Leftrightarrow x+4=5\sqrt{x}\Leftrightarrow x-5\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=1\end{matrix}\right.\)
Vậy tất cả các x thỏa ycbt là x=1 hoặc x=16
c. \(A>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}-4>0\Leftrightarrow\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}}>0\)
Vì \(\left(\sqrt{x}-2\right)^2\ge0\forall x\) nên \(\left\{{}\begin{matrix}\sqrt{x}-2\ne0\\\sqrt{x}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x>0\end{matrix}\right.\)
Vậy tất cả các x thỏa mãn ycbt là x>0 và \(x\ne4\)
\(\dfrac{12345}{10000}=\dfrac{2469}{2000}\)
\(\dfrac{19765}{13478}=\dfrac{19765}{12478}\)
Xong bạn so sánh nhé, số hơi xấu.
số to quá bạn ạ!