K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: n<>-3

Để \(\dfrac{3n+2}{n+3}\in Z\) thì \(3n+2⋮n+3\)

=>\(3n+9-7⋮n+3\)

=>\(-7⋮n+3\)

=>\(n+3\in\left\{1;-1;7;-7\right\}\)

=>\(n\in\left\{-2;-4;4;-10\right\}\)

AH
Akai Haruma
Giáo viên
17 tháng 4 2023

Lời giải:

$A=\frac{3n+5}{3n-2}=\frac{(3n-2)+7}{3n-2}=1+\frac{7}{3n-2}$

Để $A$ nguyên thì $\frac{7}{3n-2}$ nguyên. 

Với $n$ nguyên thì điều này xảy ra khi $7\vdots 3n-2$

$\Rightarrow 3n-2\in\left\{\pm 1; \pm 7\right\}$

$\Rightarrow n\in\left\{1; \frac{1}{3}; 3; \frac{-5}{3}\right\}$

Vì $n$ nguyên nên $n\in\left\{1;3\right\}$

5 tháng 8 2019

Để  \(A=\frac{3n+8}{n+2}\) nguyên 

thì 3n + 8 chia hết cho n + 2 

=> 3n + 8 =  3 . ( n + 2 ) + 2  chia hết cho n + 2 

mà 3. ( n + 2 ) chia hết cho n + 2 

      3 . ( n + 2 ) + 2 chia hết cho n + 2      <=> 2 chia hết cho n + 2 

Ta có :            n + 2 thuốc U ( 2 ) = { 1 ; 2 ; - 1 ; - 2 } 

n + 2 = 1 => n = -1

n + 2 = 2 => n = 0 

n + 2 = -1 => n = - 3 

n + 2 = -2 => n = - 4 

Vậy n = { -1 ; 0 ; -3 ; -4 } thỏa mãn đ/k thì A nguyên 

\(M=\dfrac{3n-1}{n-1}=\dfrac{3n-3+2}{n-1}=3+\dfrac{2}{n-1}\)

Để M min thì \(\dfrac{2}{n-1}\) min

=>n-1=-1

=>n=0

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Lời giải:

Ta thấy $n,n-3$ khác tính chẵn lẻ nên $n(n-3)$ chẵn 

$\Rightarrow n^2-3n+1$ lẻ. Do đó:

$25\equiv -1\pmod{13}$

$\Rightarrow 25^{n^2-3n+1}\equiv (-1)^{n^2-3n+1}\equiv -1\pmod {13}$

$\Rightarrow 25^{n^2-3n+1}-12\equiv -13\equiv 0\pmod {13}$

Vậy $25^{n^2-3n+1}-12$ luôn chia hết cho $13$ với mọi $n$ nguyên dương 

Do đó để nó là snt thì $25^{n^2-3n+1}-12=13$

$\Leftrightarrow n^2-3n+1=1$

$\Leftrightarrow n(n-3)=0$

$\Leftrightarrow n=3$ (do $n$ nguyên dương)

17 tháng 8 2021

em hiểu rồi, cảm ơn ạ

6 tháng 4 2021

Chắc là để A nguyên à bạn .

\(A=\dfrac{3n+2}{n}=3+\dfrac{2}{n}\)

Để A nguyên , mà 3 nguyên 

\(\Leftrightarrow2⋮n\Leftrightarrow n\inƯ\left\{2\right\}=\left\{1;-1;2;-2\right\}\)

\(A=\dfrac{2n-3-n}{n+8}=\dfrac{n-3}{n+8}=\dfrac{n+8-11}{n+8}=1-\dfrac{11}{n+8}\)

Để A nguyên thì 11 chia hết cho n+8

=>\(n+8\in\left\{1;-1;11;-11\right\}\)

=>\(n\in\left\{-7;-9;3;-19\right\}\)

4 tháng 4 2023

cô mik lm dài hơn nhưng giống k/q =)))

 

Ta có: 3n+5⋮n+1.

(3n+3)+2⋮n+1.

3(n+1)+2⋮n+1.

mà 3(n+1)⋮n+1

⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.

Ta lập bảng xét giá trị 

n+1-11-22
n-20-31
6 tháng 11 2019

Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)                                                                                                                                                                         

TC : 3n-5 -[3.(n+1)]:hết cho n+1

3n-5 -(3n+3) :hết cho n+1

3n- 5 -  3n-3:hết cho n+1

2:hết cho n+1  =≫n+1 thuôc Ư(2)={1;2}

thay n+1lần lượt= 1;2 là ban sẽ ra

12 tháng 4 2018

Để 3n-2/n+3 là số nguyên thì 3n-2 phải chia hết cho n+3​

​Ta có : 3n+9-3n+2 chia hết cho n+3 => 11 chia hết cho n+3 <=>n+3 =1 hoặc 11<=>n=4 hoặc 14

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c