K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3

Ta có: \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\) 

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y+z}=2\\\dfrac{y+z+1}{x}=2\\\dfrac{x+z+2}{y}=2\\\dfrac{x+y-3}{z}=2\end{matrix}\right.\) 

Ta có: \(\dfrac{1}{x+y+z}=2\Rightarrow x+y+z=\dfrac{1}{2}\) 

\(\dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow\left(x+y+z\right)+1=3x\)

\(\Rightarrow\dfrac{1}{2}+1=3x\)

\(\Rightarrow3x=\dfrac{3}{2}\Rightarrow x=\dfrac{1}{2}\)  

\(x+y+z=\dfrac{1}{2}\Rightarrow y+z=0\Rightarrow y=-z\)  

\(\dfrac{x+z+2}{y}=2\Rightarrow\dfrac{\dfrac{1}{2}+z+2}{-z}=2\Rightarrow\dfrac{5}{2}+z=-2z\)

\(\Rightarrow3z=-\dfrac{5}{2}\Rightarrow z=-\dfrac{5}{6}\)

\(\Rightarrow y=-\left(-\dfrac{5}{6}\right)=\dfrac{5}{6}\)

Vậy: \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{5}{6};-\dfrac{5}{6}\right)\)

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

2 tháng 12 2015

 Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0) 
theo tính chất tỷ lệ thức 
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2 
=> 1/(x+y+z) = 2 
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1) 
.(y+z+1)/x = 2 <=> y + z + 1 = 2x 
kết hợp với (1) => 1/2 - x + 1 = 2x 
<=> x = 1/2 => y + z = 0 <=> y = -z 
có (x+y-3)/z = 2 
<=> x + y - 3 = 2z 
<=> y - 2z = 5/2 
do y = -z => -3z = 5/2 <=> z = -5/6 
y = 5/6 

2 tháng 12 2015

mik đồng ý với cánh diều tuổi thơ mà câu này cực kì đơn giản.

tick cho mik nhé.

13 tháng 9 2015

dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0) 
* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2) 

Tick đúng cho mink nha!

2 tháng 10 2016

Làm sai bét

3 tháng 12 2015

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2=\frac{1}{x+y+z}\)

=> x+y+z = 1/2

+ y+z+1 =2x => x+y+z +1 = 3x => 3x =1/2 +1 =3/2 => x =1/2

+x+z+2 =2y => x+y+z+2 =3y => 3y =1/2 +2 =5/2 => y =5/6

+x+y-3 = 2z => x+y+z -3 =3z => 3z =1/2 -3 =-5/2 => z =-5/6

20 tháng 8 2020

TH1: x + y + z ≠≠ 0

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

xy+z+1xy+z+1 = yx+z+2yx+z+2 = zx+y−3zx+y−3 = x+y+zy+z+1+x+z+2+x+y−3x+y+zy+z+1+x+z+2+x+y−3 

              = x+y+zx+y+z+x+y+zx+y+zx+y+z+x+y+z = x+y+z2(x+y+z)x+y+z2(x+y+z) = 1212 

⇒ x + y + z = 1212

⇒ x + y       = 1212 - z

    x + z        = 1212 - y

    y + z        = 1212 - x

Thay y + z + 1 = 1212 - x + 1

⇒ x12−x+1x12−x+1 = 1212

⇒ 2x = 1212 - x + 1

⇒ 2x + x = 1212 + 1

⇒  3x   =  3232

⇒   x    = 1212

Thay x + z + 2 = 1212 - y + 2

⇒ y12−y+2y12−y+2 = 1212

⇒ 2y = 1212 - y + 2

⇒ 2y + y = 1212 + 2

⇒   3y  = 5252

⇒     y   = 5656

Thay x + y - 3 = 1212 - z - 3

⇒ z12−z−3=1/2

⇒ 2z = 1212 - z - 3

⇒ 2z + z = 1212 - 3

⇒  3z  = −52−52

⇒   z   = −56−56

TH2: x + y + z = 0

⇒ xy+z+1xy+z+1 = yx+z+2yx+z+2 = zx+y−3zx+y−3 = 0

⇒ x = y = z = 0

Vậy..................

29 tháng 11 2021

Áp dụng t/c dtsbn ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)