Cho hình thang ABCD (AB//DC), có AB=3, AD=4, BC=6, CD=9. Tính diện tích hình thang đó.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
MA
14 tháng 2 2018
diện tích hình thang abcd
theo công thức S=1/2h(a+b)
có ab=3cm(ab=1/3CD);Ad=4cm(Ad là chiều cao);DC=9cm
suy ra: S= 1/2 nhân 4(3+9)=24
25 tháng 8 2021
Bài 2:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
29 tháng 8 2021
Kéo dài AD và BC, chúng cắt nhau tại M, dựng đường cao DH.
⇒ tam giác ABM đều.⇒AB=AM=4,5⇒DC=AM-AD=4,5-2=2,5Xét tam giác ADH vuông tại D có ADH=30AH=1/2AD=1/2.2=1Mặt khác ta có:DH²=AD²-AH²(theo định lý PITAGO)⇒DH²=4-1=3⇒DH=√3⇒Sabcd=(DC+AB).DH/2=(2,5+4,5).√3/2=7√3/2
CM
14 tháng 4 2018
Kẻ BH ^ CD tại H Þ BH = B C 2 = 4cm.
Tính được SABCD = 22cm2
A B C D H K
kẻ AH vuông góc với DC, BK vuông góc với DC
do AB song song với CD , AH song song với BK suy ra ABHK là hình bình hành
\(\Rightarrow AB=HK=3,\)\(\Rightarrow DH+KC=9-3=6\Rightarrow KC=6-DH\),\(\)
đặt DH=x
ap dung dl pitago trong tam giac vuong ADH \(AH^2+DH^2=AD^2\Rightarrow AH^2=4^2-x^2\)
tam giac vuong BKC \(BK^2+KC^2=BC^2\Rightarrow BK^2=6^2-\left(6-x\right)^2\)
ma \(BK=AH\Rightarrow BK^2=AH^2\Rightarrow\) \(4^2-x^2=6^2-\left(6-x\right)^2\Leftrightarrow16-x^2=36-36+16x-x^2\)
\(\Leftrightarrow16=16x\Rightarrow x=1\)
\(\Rightarrow AH^2=4^2-1^2=15\Rightarrow AH=\sqrt{15}\)
SABCD=\(\frac{\left(AB+DC\right)AH}{2}=\frac{\left(3+9\right)\sqrt{15}}{2}=6\sqrt{15}\)