K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2

Các số nguyên có 2 chữ số là: \(-99;-98;...;98;99\)

\(\Rightarrow x=\left(-99\right)+\left(-98\right)+...+98+99=0\)

Số nguyên âm lớn nhất là: - 1 

\(\Rightarrow y=-1\) 

\(A=2023x^{2022}-2022y^{2023}\)

\(=2023\cdot0^{2022}-2022\cdot\left(-1\right)^{2023}\)

\(=2023\cdot0-2022\cdot\left(-1\right)\)

\(=0+2022\)

\(=2022\)

11 tháng 12 2022

1+1=?

19 tháng 1 2022

TA CÓ X LÀ TỔNG TẤT CẢ CÁC SỐ NGUYÊN CÓ 2 CHỮ SỐ

=> X=0

Y LÀ SỐ NGUYÊN ÂM LỚN NHẤT 

=>Y=0

TA  CÓ BIỂU THỨC SAU

A=2009.0^2006-2008.(-1)^2007

=0-2008.(-1)

=2008

VẬY A=2008

 

1 tháng 2 2019

tổng các số nguyên có 2 chữ số là 0

số nguyên âm lớn nhất là-1

Suy ra ta có biểu thức sau:

A=2009.02006-2008.(-1)2007

A=   0-   2008.(-1)

A=0-(-2008)

A=2008

24 tháng 8 2023

\(M=x^{2023}-2023.\left(x^{2022}-x^{2021}+x^{2020}-x^{2019}+...+x^2-x\right)\)

Ta có : \(x=2022\Rightarrow x+1=2023\)

\(\Rightarrow M=x^{2023}-\left(x+1\right).\left(x^{2022}-x^{2021}+x^{2020}-x^{2019}+...+x^2-x\right)\)

\(\Rightarrow M=x^{2023}-\left(x+1\right)x^{2022}+\left(x+1\right)x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}+...-\left(x+1\right)x^2+\left(x+1\right)x\)

\(\Rightarrow M=x^{2023}-x^{2023}-x^{2022}+x^{2022}+x^{2021}-x^{2021}-x^{2020}+x^{2020}+x^{2019}-x^{2019}-...-x^3-x^2+x^2+x\)

\(\Rightarrow M=x\)

\(\Rightarrow M=2022\)

Vậy \(M=2022\left(tạix=2022\right)\)

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3