K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ông bao nhiêu năm thì cháu bấy nhiêu tháng => Tuổi ông gấp 12 lần tuổi cháu.

Hiệu số phần bằng nhau là:

      12 - 1 = 11 ( phần )

Tuổi của ông là:

     77 : 11 x 12 = 84 ( tuổi )

Tuổi của cháu là:

    84 - 77 = 7 ( tuổi )

           Đáp số : ...................

a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có 

AD=BC

\(\widehat{D}=\widehat{C}\)

Do đó: ΔAHD=ΔBKC

Suy ra: DH=CK

b: Ta có: DH=CK

nên DH+HK=CK+HK

hay DK=HC

25 tháng 2 2016

nhiều bài thế

8 tháng 1 2018

Thế này chắc sáng mai chẳng xong mấtbatngo

10 tháng 9 2018

Đề của bạn sai. Bài này chắc giống với bài sau:

Câu hỏi của hoang duong sang - Toán lớp 8 - Học toán với OnlineMath

16 tháng 3 2020

 a,  xét tứ giác ADMN có

góc A =góc D = 90 độ ( DH nhận biết hcn )

góc N = 90 độ ( gt )

=>Tứ giác ADMN là hcn ( tứ giác có 3 góc vuông)

b,     Xét tam giác CHD có:

CI=IH ( gt )   ;    CM=MD ( gt )

=>MI là đường TB của tam giác CDH    => MI // DH ( tc đg tb )

   Mà DH vuông góc vs AC       =>     MI vuông góc vuông

c, tự làm nhé

10 tháng 9 2018

A B C D H K G E F I O

1) Tam giác vuông ABH = tam giác vuông BAK (Góc vuông A = góc vuông B, cạnh AB chung, góc \(\widehat{KAB}=\widehat{HBA}\))

=> AH = BK

Mà AH // BK cì cùng vuông góc với AB => ABKH là hình bình hành, lại có 2 góc vuông nên nó là hình chữ nhật

b) Gọi O là trung điểm của HK. Ta có E, I , O thẳng hàng do ABKH là hình chữ nhật (các bạn tự chứng minh)

HK // AB // DC => E, O, F thẳng hàng 

HKDC là hình thang cân => O, G, F cũng thẳng hàng

=> E, I, O, G, F thảng hàng

19 tháng 12 2020

cho em hỏi là tại sao lại có góc KAB = HBA ạ

 

a) Xét ΔAHD vuông tại H và ΔBAD vuông tại A có 

\(\widehat{ABD}\) chung

Do đó: ΔAHD∼ΔBAD(g-g)

Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:

\(AH^2+HD^2=AD^2\)

\(\Leftrightarrow HD^2=AD^2-AH^2=5^2-4^2=9\)

hay HD=3(cm)

Ta có: ΔAHD∼ΔBAD(cmt)

nên \(\dfrac{AH}{BA}=\dfrac{HD}{AD}=\dfrac{AD}{BD}\)

\(\Leftrightarrow\dfrac{4}{AB}=\dfrac{3}{5}\)

hay \(AB=\dfrac{20}{5}cm\)

Vậy: \(AB=\dfrac{20}{5}cm\)

b) Xét ΔAHD vuông tại H và ΔBHA vuông tại H có 

\(\widehat{HAD}=\widehat{HBA}\left(=90^0-\widehat{ADH}\right)\)

Do đó: ΔAHD∼ΔBHA(g-g)

\(\dfrac{AH}{BH}=\dfrac{HD}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(HA^2=HB\cdot HD\)(đpcm)