a)Tìm giá trị nhỏ nhất của biểu thức/x-2\-9/10
b)Tìm giá trị lớn nhất của biểu thức 4-/5x+3\
Các bạn ơi giúp mk với ạ mk cần gấp lắm lun ý!Cám ơn các bạn nhìu!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
a) * Ta có: \(7\left(x-2\right)^2\ge0\)
\(\Rightarrow7\left(x-2\right)^2+2013\ge2013\)
Dấu "=" xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy Amin=2013 khi x = 2
* Ta có: \(5x^2\ge0\Rightarrow5x^2-9\ge-9\)
Tương tự
b) Ta có: \(3.\left(3-5x\right)^2\ge0\Rightarrow2015-2\left(3-5x\right)\le2015\)
Dấu "=" xảy ra khi \(3-5x=0\Rightarrow x=\frac{3}{5}\)
Vậy Cmax=2015 khi x = 3/5
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a) Nhận xét :
/ x + 8 / > 0 với mọi x
/ y - 3 / > 0 với mọi y
=> / x + 8 / + / y - 3 / > 0
=> / x + 8 / + / y - 3 / + 2018 > 2018
=> M > 2018
=> Giá trị nhỏ nhất của M = 2018
Dấu " = " xảy ra khi :
/ x + 8 / = 0
và / y - 3 / = 0
=> x + 8 = 0
và y - 3 = .0
=> x = - 8
Và y = 3
Vậy giá trị nhỏ nhất của M là 2018 khi x = - 8 và y = 3
b) Nhận xét :
/ x + 2 / > 0 với mọi x
/ y - 1 / > 0 với mọi y
=> / x + 2 / + / y - 1 / > 0
=> - / x + 2 / - / y - 1 / < 0
=> - / x + 2 / - / y - 1 / + 1999 < 1999
=> N < 1999
=> Giá trị lớn nhất của N = 1999
Dấu " = " xảy ra khi :
/ x + 2 / = 0
và / y - 1 / = 0
=> x + 2 = 0
và y - 1 = 0
=> x = - 2
và y = 1
Vậy giá trị lớn nhất của N là 1999 khi x = - 2 và y = 1
Đề GTLN A mình thấy nó sao sao ấy! Cần suy nghĩ thêm. Mà bạn cũng nên xem lại đề =))
\(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\)
Ta có BĐT: Với n chẵn thì: \(a^n\ge0\)
Do vậy,ta có: \(\left(x+2\right)^2\ge0\)
\(\left(y+3\right)^4\ge0\)
Do đó \(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\ge1999\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)
Vậy \(B_{min}=1999\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}\)
Áp dụng bđt Holder ta được:
\(9\left(a^3+b^3+c^3\right)=3.3.\left(a^3+b^3+c^3\right)=\left(1+1+1\right)\left(1+1+1\right)\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3=1\Rightarrow A\ge\frac{1}{9}\)
Dấu bằng xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)
c/m bất đẳng thức Holder:
Cho a,b,c,x,y,z,m,n,p là các số thực dương. Khi đó ta có:
\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)
Sử dụng bất đẳng thức AM-GM (Cô-si) ta có:
\(\frac{a^3}{a^3+b^3+c^3}+\frac{x^3}{x^3+y^3+z^3}+\frac{m^3}{m^3+n^3+p^3}\ge\frac{3axm}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)
Tương tự:
\(\frac{b^3}{a^3+b^3+c^3}+\frac{y^3}{x^3+y^3+z^3}+\frac{n^3}{m^3+n^3+p^3}\ge\frac{3byn}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)
\(\frac{c^3}{a^3+b^3+c^3}+\frac{z^3}{x^3+y^3+z^3}+\frac{p^3}{m^3+n^3+p^3}\ge\frac{3czp}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)
\(\Rightarrow3\ge\frac{3axm+3byn+3czp}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)
\(\Leftrightarrow\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}\ge axm+byn+czp\)
\(\Leftrightarrow\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)
Đẳng thức xảy ra khi các biến bằng nhau
a) Có: \(\left|x-2\right|\ge0\)
\(\left|x-10\right|\ge0\)
\(\Rightarrow\left|x-2\right|+\left|x-10\right|+4\ge4\)
Xét \(\orbr{\begin{cases}x-2=0\Rightarrow x=2\Rightarrow A=0+8+4=12\\x-10=0\Rightarrow x=10\Rightarrow A=8+0+4=12\end{cases}}\)
Vậy \(Min_A=12\) tại \(x=2\) hoặc \(10\)
b) Có: \(\left|x-1\right|\ge0\)
\(\left|x-2\right|\ge0\)
\(\left|x-3\right|\ge0\)
\(\Rightarrow B\ge0\)
Xét: \(\hept{\begin{cases}x-1=0\Rightarrow x=1\Rightarrow B=0+1+2=3\\x-2=0\Rightarrow x=2\Rightarrow B=1+0+1=2\\x-3=0\Rightarrow x=3\Rightarrow B=2+1+0=3\end{cases}}\)
Vậy \(Min_B=2\) tại \(x=2\)