A = \(\frac{a^5+a^6+a^7+a^8}{a^{-5}+a^{-6}+a^{-7}+a^{-8}}\)
Tinh bieu thuc A tai a=2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4+\frac{11}{8}-\frac{5}{6}=\frac{96+33-20}{24}=\frac{109}{24}\)
\(\left(\frac{1}{2}+\frac{4}{7}\right)-\left(\frac{3}{7}-\frac{3}{10}\right)=\frac{1}{2}+\frac{4}{7}-\frac{3}{7}+\frac{3}{10}\)
\(\left(\frac{1}{2}+\frac{3}{10}\right)+\left(\frac{4}{7}-\frac{3}{7}\right)=\frac{4}{5}+\frac{1}{7}=\frac{28+5}{35}=\frac{33}{35}\)
ban Chitanda Eru oi to bao nhung ma nhan voi bao nhieu ma ra duoc 96
a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)
A=1/2*5+1/5*8+1/8*11+...+1/2012*1015
=1/3*(1/2-1/5+1/5-1/8+1/8-1/11+...+1/2012-1/2015)
=1/3*(1/2-1/1/2015)
=1/3*2013/4030
=671/4030
vậy A=671/4030
a/ Ta có: A=\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)=\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+1\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1\right):\left(\sqrt{x}\right)=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b/ Ta có :\(x=7+4\sqrt{3}=3+4\sqrt{3}+4=\left(\sqrt{3}+2\right)^2
\)
\(\Rightarrow\sqrt{x}=|\sqrt{3}+2|=\sqrt{3}+2\)
Thay x vào A ta có:
A\(=\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}+2+1}{\sqrt{3}+2}=\frac{\sqrt{3}+3}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+3\right)\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{3-\sqrt{3}}{1}=3-\sqrt{3}\)
Ta có:
\(\frac{a^5+a^6+a^7+a^8}{a^{-5}+a^{-6}+a^{-7}+a^{-8}}\)
\(=\frac{a^5+a^6+a^7+a^8}{\frac{1}{a^5}+\frac{1}{a^6}+\frac{1}{a^7}+\frac{1}{a^8}}\)
\(=a^{5+6+7+8}=a^{26}\)
Thay vào sẽ là:
\(2015^{26}=8.149881843.10^{85}\)
\(A=\frac{a^3\left(a^3+a^2+a+1\right).a^8}{a^3+a^2+a^1+a}=a^{24}\)