K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2

ĐKXĐ: \(x\in\mathbb{R}\)

Đặt \(A=\dfrac{x+3}{x^2+7}\). Khi đó:

Xét: \(A-\dfrac{1}{2}=\dfrac{x+3}{x^2+7}-\dfrac{1}{2}=\dfrac{2\left(x+3\right)}{2\left(x^2+7\right)}-\dfrac{x^2+7}{2\left(x^2+7\right)}\)

\(=\dfrac{2x+6-x^2-7}{2\left(x^2+7\right)}=\dfrac{-x^2+2x-1}{2\left(x^2+7\right)}=\dfrac{-\left(x-1\right)^2}{2\left(x^2+7\right)}\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\2\left(x^2+7\right)>0\forall x\end{matrix}\right.\Rightarrow\dfrac{\left(x-1\right)^2}{2\left(x^2+7\right)}\ge0\)

\(\Rightarrow\dfrac{-\left(x-1\right)^2}{2\left(x^2+7\right)}\le0\)

\(\Leftrightarrow A-\dfrac{1}{2}\le0\Leftrightarrow A\le\dfrac{1}{2}\)

Dấu \("="\) xảy ra khi: \(x-1=0\Leftrightarrow x=1\)

Vậy GTLN của biểu thức đã cho là \(\dfrac{1}{2}\) tại \(x=1\).

\(\text{#}Toru\)

27 tháng 12 2021

a) ĐKXĐ : \(3\le x\le7\)

Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)

\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)

Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)

 

27 tháng 12 2021

Max và min chứ có ngu đến mức k bt lm cái đó đâu

9 tháng 8 2017

sai dề kìa \(\frac{6x+3}{x^3+1}\)mới đúng        

ĐK :  \(x\ne-1\)

a) rút gọn được \(C=\frac{1}{x^2-x+1}\)

b)\(C=\frac{1}{3}\Rightarrow\frac{1}{x^2-x+1}=\frac{1}{3}\)

\(\Rightarrow x^2-x+1=3\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)=0\\\left(x-2\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\left(Loai\right)\\x=2\left(Nhan\right)\end{cases}}}\)

vậy khi \(C=\frac{1}{3}\)thì x=2

c)\(C=\frac{1}{x^2-x+2}\)

ta có  \(x^2-x+2=x^2-2x\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

\(\Rightarrow C=\frac{1}{\left(x-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{7}{4}\)

vậy max \(C=\frac{7}{4}\)khi và chỉ khi \(x=\frac{1}{2}\)

27 tháng 2 2021

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y}\). khi đó gt trở thành:

\(a+b=a^2+b^2-ab\ge\dfrac{1}{4}\left(a+b\right)^2\Leftrightarrow o\le a+b\le4\);

\(A=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=\left(a+b\right)^2\le16\)

Đẳng thức xảy ra khi và chỉ khi a=b=2 <=> x=y=1/2

Vậy Max A = 16

NV
22 tháng 1

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2=2-xy\)

\(\Rightarrow2-xy\ge0\)

\(\Rightarrow xy\le2\)

\(A_{max}=2\) khi \(\left(x;y\right)=\left(1;2\right);\left(-1;-2\right)\)

3 tháng 9 2021

Mk cần đáp án gấp ạ.(khoảng 20-30p)gianroi

1 tháng 7 2021

\(a,5x\dfrac{7}{3}=\dfrac{5}{1}x\dfrac{7}{3}=\dfrac{35}{3};b,\dfrac{13}{4}:7=\dfrac{13}{4} :\dfrac{7}{1}=\dfrac{13}{4}x\dfrac{1}{7}=\dfrac{13}{28}\)

1 tháng 7 2021

1. Tính 

\(a,5\times\dfrac{7}{3}=\dfrac{35}{3}\)

\(b,\dfrac{13}{4}:7=\dfrac{13}{4}\times\dfrac{1}{7}=\dfrac{13}{28}\)

2. Tính

\(a,\dfrac{3}{7}+\dfrac{2}{5}+\dfrac{3}{4}\)

\(=\dfrac{15}{35}+\dfrac{14}{35}+\dfrac{3}{4}\)

\(=\dfrac{29}{35}+\dfrac{3}{4}\)

\(=\dfrac{116}{140}+\dfrac{105}{140}\)

\(=\dfrac{221}{140}\)

\(b,\dfrac{9}{7}-\dfrac{5}{11}\times\dfrac{11}{7}\)

\(=\dfrac{9}{7}-\dfrac{55}{77}\)

\(=\dfrac{99}{77}-\dfrac{55}{77}\)

\(=\dfrac{44}{77}=\dfrac{4}{7}\)

\(c,\dfrac{3}{5}\times\dfrac{5}{7}+\dfrac{4}{7}\)

\(=\dfrac{3}{5}\times\left(\dfrac{5}{7}+\dfrac{4}{7}\right)\)

\(=\dfrac{3}{5}\times\dfrac{9}{7}\)

\(=\dfrac{27}{35}\)

\(d,\dfrac{7}{9}\times\dfrac{2}{5}:\dfrac{3}{11}\)

\(=\dfrac{14}{45}:\dfrac{3}{11}\)

\(=\dfrac{14}{45}\times\dfrac{11}{3}\)

\(=\dfrac{154}{135}\)

\(e,\dfrac{9}{7}+\dfrac{2}{3}-\dfrac{1}{4}\)

\(=\dfrac{27}{21}+\dfrac{14}{21}-\dfrac{1}{4}\)

\(=\dfrac{41}{21}-\dfrac{1}{4}\)

\(=\dfrac{164}{84}-\dfrac{21}{84}\)

\(=\dfrac{143}{84}\)

\(g,\dfrac{4}{9}:\dfrac{3}{5}\times\dfrac{2}{11}\)

\(=\dfrac{4}{9}\times\dfrac{5}{3}\times\dfrac{2}{11}\)

\(=\dfrac{20}{27}\times\dfrac{2}{11}\)

\(=\dfrac{40}{297}\)

\(h,\dfrac{7}{2}-\dfrac{3}{10}:\dfrac{2}{5}\)

\(=\left(\dfrac{7}{2}-\dfrac{3}{10}\right):\dfrac{2}{5}\)

\(=\left(\dfrac{35}{10}-\dfrac{3}{10}\right):\dfrac{2}{5}\)

\(=\dfrac{32}{10}:\dfrac{2}{5}\)

\(=\dfrac{16}{5}\times\dfrac{5}{2}\)

\(=\dfrac{80}{10}=8\)

NV
8 tháng 8 2021

a.

\(2x-x^2+7=-\left(x^2-2x+1\right)+8=-\left(x-1\right)^2+8\le8\)

\(\Rightarrow2+\sqrt{2x-x^2+7}\le2+\sqrt{8}=2+2\sqrt{2}\)

\(\Rightarrow\dfrac{3}{2+\sqrt{2x-x^2+7}}\ge\dfrac{3}{2+2\sqrt{2}}=\dfrac{3\sqrt{2}-3}{2}\)

\(A_{min}=\dfrac{3\sqrt{2}-3}{2}\) khi \(x=1\)

b. ĐKXĐ: \(x\le1\)

\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}-\dfrac{1}{2}-1\right)\)

\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}\right)+\dfrac{3}{2}\)

\(B=-\left(\sqrt{1-x}-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}\le\dfrac{3}{2}\)

\(B_{max}=\dfrac{3}{2}\) khi\(x=\dfrac{1}{2}\)

8 tháng 8 2021

dạ em cảm ơn anh ạ 

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:
a.

Áp dụng BĐT Bunhiacopxky:

$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$

$\Rightarrow A\leq 4$

Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$

b.

$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$

Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương

$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$

$\sqrt{x}=\frac{5-2m}{m}$

Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$

Mà $m$ nguyên dương nên $5-2m\geq 0$

$\Leftrightarrow m\leq 2,5$. 

$\Rightarrow m=1; 2$

$\Rightarrow x=9; x=\frac{1}{4}$

24 tháng 5 2018

Ta có BĐT:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow6\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)+2016\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow7.\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le2016\)
Xét \(P=\frac{1}{\sqrt{3\left(2x^2+y^2\right)}}+\frac{1}{\sqrt{3\left(2y^2+z^2\right)}}+\frac{1}{\sqrt{3\left(2z^2+x^2\right)}}\)
\(P^2=\left(\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2x^2+y^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2y^2+z^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2z^2+x^2}}\right)^2\)
Áp dụng BĐT Bunhiacopxki ta có:
\(P^2\le\left(\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2\right)\left(\left(\frac{1}{\sqrt{2x^2+y^2}}\right)^2+\left(\frac{1}{\sqrt{2y^2+z^2}}\right)^2+\left(\frac{1}{\sqrt{2z^2+x^2}}\right)^2\right)\)
\(\Leftrightarrow P^2\le\frac{1}{2x^2+y^2}+\frac{1}{2y^2+z^2}+\frac{1}{2z^2+x^2}\)
Mặt khác ta có:
\(\frac{1}{2x^2+y^2}=\frac{1}{x^2+x^2+y^2}\le\frac{1}{9}\left(\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\frac{1}{2y^2+z^2}\le\frac{1}{9}\left(\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
\(\frac{1}{2z^2+x^2}\le\frac{1}{9}\left(\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}\right)\)
\(\Rightarrow P^2\le\frac{1}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le\frac{1}{3}.2016=672\)
\(\Rightarrow P\le4\sqrt{42}\)
Dấu '=' xảy ra khi \(x=y=z=\sqrt{\frac{1}{672}}\)
 

23 tháng 5 2018

cộng 2016 nhé

18 tháng 8 2018

ta có : \(K=\dfrac{x^2}{x^2-5x+7}\Leftrightarrow\left(k-1\right)x^2-5kx+7k\)

vì phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)

\(\Leftrightarrow\left(5k\right)^2-4\left(k-1\right)7k\ge0\Leftrightarrow-3k^2+28k\ge0\)

\(\Leftrightarrow k\left(28-3k\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}k\ge0\\28-3k\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}k\le0\\28-3k\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0\le k\le\dfrac{28}{3}\\k\in\varnothing\end{matrix}\right.\)

\(\Rightarrow0\le k\le\dfrac{28}{3}\)

\(\Rightarrow k_{max}=\dfrac{28}{3}\) khi \(x=\dfrac{-b}{2a}=\dfrac{5k}{2\left(k-1\right)}=\dfrac{5\left(\dfrac{28}{3}\right)}{2\left(\dfrac{28}{3}-1\right)}=\dfrac{14}{5}\)

\(\Rightarrow k_{min}=0\) khi \(x=\dfrac{-b}{2a}=\dfrac{5k}{2\left(k-1\right)}=\dfrac{5.0}{2\left(0-1\right)}=0\)

vậy ...................................................................................................

23 tháng 1 2020

Nguyễn Thị Mỹ Lệ