K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

\(\sqrt{3x+1}+\sqrt{2-x}=x+\sqrt{\left(2-x\right)\left(3x-1\right)}\Leftrightarrow\left(\sqrt{3x+1}-2\right)+\left(\sqrt{2-x}-1\right)+3=x+\left(\sqrt{\left(2-x\right)\left(3x+1\right)}-2\right)+2\)

\(\Leftrightarrow\frac{3x-3}{\sqrt{3x+1}+2}+\frac{-x+1}{\sqrt{2-x}+1}=\left(x-1\right)+\frac{-3x^2+5x-2}{\sqrt{\left(2-x\right)\left(3x+1\right)+2}}\)

30 tháng 8 2017

\(\Leftrightarrow\left(x-1\right)\left[\frac{3x-2}{\sqrt{\left(2-x\right)\left(3x+1\right)}+2}+\frac{3}{\sqrt{3x+1}+2}-\frac{1}{\sqrt{2-x}+1}-1\right]=0\)\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1.\)

26 tháng 6 2023

\(a,\dfrac{3}{\sqrt{12x-1}}\) xác định \(\Leftrightarrow12x-1>0\Leftrightarrow12x>1\Leftrightarrow x>\dfrac{1}{12}\)

\(b,\sqrt{\left(3x+2\right)\left(x-1\right)}\) xác định \(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}3x+2\ge0\\x-1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}3x+2\le0\\x-1\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\)

\(c,\sqrt{3x-2}.\sqrt{x-1}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3x-2\ge0\\x-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)

\(d,\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\) xác định \(\Leftrightarrow-x+5>0\Leftrightarrow x< 5\)

NV
18 tháng 1 2022

ĐKXĐ:

a.

\(x^2-9\ge0\Rightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

b.

\(\left(3x+2\right)\left(x-1\right)\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{2}{3}\end{matrix}\right.\)

c.

\(\left\{{}\begin{matrix}3x-2\ge0\\x-1\ge0\end{matrix}\right.\) \(\Rightarrow x\ge1\)

18 tháng 1 2022

a) x khác 0, khác 3

b) x khác 0, khác 1, khác 2/3

c) x khác 0, khác 1, khác 2/3

3 tháng 7 2017

a)\(\sqrt{\left(x+3\right)\left(x+2\right)}+\sqrt{\left(x+3\right)\left(x-1\right)}=2\sqrt{\left(x+3\right)^2}\)

\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+2\right)}+\sqrt{\left(x+3\right)\left(x-1\right)}-2\sqrt{\left(x+3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+2}+\sqrt{x-1}-2\sqrt{x+3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x+3}=0\\\sqrt{x+2}+\sqrt{x-1}=2\sqrt{x+3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\2x+1+2\sqrt{\left(x-1\right)\left(x+2\right)}=4\left(x+3\right)\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\2\sqrt{\left(x-1\right)\left(x+2\right)}=2x+11\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\4\left(x-1\right)\left(x+2\right)=4x^2+44x+121\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\-40x=129\end{cases}}\Rightarrow x=-3\) (thỏa)

3 tháng 7 2017

b)\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)

Đk:\(x\ge-\frac{1}{3}\)

\(pt\Leftrightarrow\frac{3x}{\sqrt{3x+10}}+1=\sqrt{3x+1}\)

\(\Leftrightarrow\frac{3x}{\sqrt{3x+10}}+1-\left(\frac{3}{5}x+1\right)=\sqrt{3x+1}-\left(\frac{3}{5}x+1\right)\)

\(\Leftrightarrow\frac{3x}{\sqrt{3x+10}}-\frac{3}{5}x=\frac{3x+1-\left(\frac{3}{5}x+1\right)^2}{\sqrt{3x+1}+\frac{3}{5}x+1}\)

\(\Leftrightarrow\frac{3x\left(5-\sqrt{3x+10}\right)}{5\sqrt{3x+10}}=\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}\)

\(\Leftrightarrow\frac{3x\cdot\frac{25-3x-10}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}=0\)

\(\Leftrightarrow\frac{3x\cdot\frac{-3\left(x-5\right)}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}=0\)

\(\Leftrightarrow x\left(x-5\right)\left(\frac{\frac{-9}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}}{\sqrt{3x+1}+\frac{3}{5}x+1}\right)=0\)

Dễ thấy: \(\frac{\frac{-9}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}}{\sqrt{3x+1}+\frac{3}{5}x+1}< 0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)

Phương trình sẽ trở thành là: a^2+a-42=0

=>(a+7)(a-6)=0

=>a=-7(loại) hoặc a=6(nhận)

=>2x^2+3x+9=36

=>2x^2+3x-27=0

=>2x^2+9x-6x-27=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)

16 tháng 6 2023

\(A=3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x+6\sqrt{x}-\left(x-1\right)\)

\(=3x+6\sqrt{x}-x+1\)

\(=2x+6\sqrt{x}+1\)

\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)

\(=x+3\sqrt{x}+\sqrt{x}+3-2\left(x-2\sqrt{x}+1\right)\)

\(=x+4\sqrt{x}+3-2x+4\sqrt{x}-2\)

\(=-x+8\sqrt{x}+1\)

\(C=3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x-3\sqrt{x}-2+\left(\sqrt{x^2}-1\right)\)

\(=3x-3\sqrt{x}-2+x-1\)

\(=4x-3\sqrt{x}-3\)

\(D=\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

\(=x-9-\left(2x-3\sqrt{x}-2\right)\)

\(=x-9-2x+3\sqrt{x}+2\)

\(=-x+3\sqrt{x}-7\)

\(E=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-2\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)

\(=\sqrt{x^2}-2^2-2\left(2x+4\sqrt{x}-\sqrt{x}-2\right)\)

\(=x-4-2\left(2x+3\sqrt{x}-2\right)\)

\(=x-4-4x-6\sqrt{x}+4\)

\(=-3-6\sqrt{x}\)

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ:...
Đọc tiếp

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ: ...

\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)

\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)

\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)

1
23 tháng 5 2019

hỏi j v