Cho 0 ≤ x , y ≤ 1 0≤x,y≤1. Chứng minh x√y − y√x≤1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+1/y = 1, ta có:
+ x=1-1/y (1)
+ (xy+1)/y=1 => xy+1=y (2)
y+1/x >=4
<=> (xy+1)/x >=4
(1), (2) => y/ (y-1) /y >=4
<=> y^2/ (y-1) >=4
<=> y^2 >= 4y -4
<=> y^2 -4y +4 >=0
<=> (y-2)^2 >=0 (đúng)
Bạn áp dụng bất đẳng thức sau để giải :
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*)
Áp dụng kết quả đó ta có
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)]
rồ tiếp tục áp dụng kết quả (*) ta lại có
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x)
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y)
Cái cuối cùng cũng tương tự như vậy
Cộng lại ba bdt trên ta sẽ có được điều cần chứng minh
a) Giả sử `(x+1)^2 >= 4x` là đúng.
Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`
`<=>x^2+1>=2x`
`<=>x^2-2x+1>=0`
`<=> (x-1)^2>=0 forall x`.
Vậy điều giả sử là đúng.
b) `x^2+y^2+2 >=2(x+y)`
`<=> (x^2-2x+1)+(y^2-2y+1) >=0`
`<=>(x-1)^2+(y-1)^2>=0 forall x,y`
c) `(1/x+1/y)(x+y)>=4`
`<=> (x+y)/(xy) (x+y) >=4`
`<=> (x+y)^2 >= 4xy`
`<=> x^2+2xy+y^2>=4xy`
`<=> (x-y)^2>=0 forall x,y > 0`
d) `x/y+y/x>=2`
`<=> (x^2+y^2)/(xy) >=2`
`<=> x^2+y^2 >=2xy`
`<=> (x-y)^2>=0 \forall x,y>0`.
a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)
=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0
=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)
b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)
=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)
=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)
c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)(vì x>0,y>0)
=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)
d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)
=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)
Mình làm hơi tắt mong bạn thông cảm nhé
Chúc bạn học tốt
PP : biến đổi tương đương
Bài làm
Ta có \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+x\right)}{xy\left(x+y\right)}\ge\dfrac{4xy}{\left(x+y\right)xy}\)
Vì x , y >0 , ta suy ra (x+y)2 \(\ge\)4xy
\(\Leftrightarrow\left(x+y\right)^2-4xy\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
Hay (x-y)2 \(\ge\)0 ( điều này luôn đúng )
Vậy..........
+)Ta có : x4 + y4 < x4 + x3y + x2y2 + xy3 + y4
Mà x > y > 1 ⟹ x - y > 0
⟹ ( x - y ) ( x4 + y4 ) < ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 ) ( * )
+)Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 )
= x ( x4 + x3y + x2y2 + xy3 + y4 ) - y ( x4 + x3y + x2y2 + xy3 + y4 )
= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x3y2 - x2y3 - xy4 - y5
= x5 - y5
⟹ ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 ) = x5 - y5 ( ** )
Từ ( * ) ; ( ** )
⟹ ( x - y ) ( x4 + y4 ) < x5 - y5
Mà x5 - y5 < x5 + y5
⟹ ( x - y ) ( x4 + y4 ) < x5 - y5
⟹ ( x - y ) ( x4 + y4 ) < x - y
⟹ x4 + y4 < 1 ( đpcm )
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=\frac{1}{2}$
\(\text{Xét hiệu:}\)
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{y.\left(x+y\right)}{xy.\left(x+y\right)}+\frac{x.\left(x+y\right)}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}\)
\(=\frac{y^2+xy}{x^2y+xy^2}+\frac{x^2+xy}{x^2y+xy^2}-\frac{4xy}{x^2y+xy^2}\)
\(=\frac{x^2-2xy+y^2}{x^2y+xy^2}=\frac{\left(x-y\right)^2}{x^2y+xy^2}\)
\(\text{Vì }\left(x-y\right)^2\ge0\text{ với mọi x;y và }x>0;y>0\)
\(\text{nên: }\frac{\left(x-y\right)^2}{x^2y+xy^2}\ge0\text{ với mọi x;y hay }\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\text{ với mọi x;y}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\text{ với mọi x;y}\)
\(\text{Xét hiệu:}\)
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{y.\left(x+y\right)}{xy.\left(x+y\right)}+\frac{x.\left(x+y\right)}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}\)
\(=\frac{xy+y^2}{xy.\left(x+y\right)}+\frac{x^2+xy}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}=\frac{x^2-2xy+y^2}{xy.\left(x+y\right)}=\frac{\left(x-y\right)^2}{xy.\left(x+y\right)}\)
\(\text{Vì }\left(x-y\right)^2\ge0\text{ với mọi x;y };x>0;y>0\)
\(\text{Nên }\frac{\left(x-y\right)^2}{xy.\left(x+y\right)}\ge0\text{ với mọi x;y}\)
\(\text{hay }\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\text{ với mọi x;y }\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\text{ với mọi x;y}\)
\(\text{Dấu "=" xảy ra khi x=y}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)