Chứng minh rằng:
a) 7^6+7^5-7^4 chia hết cho 55 ;
b) 16^5+2^15 chia hết cho 33;
c) 6^300+6^299+6^298 chia hết cho 43;
d)5^2001+5^2000+5^1999 chia hết cho 155
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B,
ta thấy:
16^5=2^20
=> A=16^5 + 2^15
= 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
sai đề à cậu 76 + 75 - 74
ta có ; 76 + 75 - 74
= 74(72 + 7 - 1)
= 74.55 chia hết cho 55
Sửa đề : \(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\left(49+6\right)\)
\(=7^4\cdot55\)
7^4 x 55 chia hết cho 55 (đpcm)
\(7^6+7^5-7^4\)
= \(7^4.\left(7^2+7-1\right)\)
=\(7^4\left(49+7-1\right)\)
=\(7^4.55\)
Vì 55 chia hết cho 55 suy ra \(7^4.55⋮55\)
\(\Rightarrow7^6+7^5-7^4⋮55\)
Vậy ...
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
76 + 75 - 74 = 74 ( 72 + 7 - 1) = 74 . 55
Vì 74 . 55 chia hết cho 55
Nên 76 + 75 - 74 chia hết cho 55
a,=7^4(7^2+7-1)
=7^4.55 vậy nó chia hết cho 55
b,16^5=2^20
2^15(2^5+1)
2^15.33 chia hết cho 33
các câu c,d cũng tương tự
deu chia het ca