1 . Tìm số nguyên n biết
n + 3 chia hết n + 2
2 n + 3 chia hết n - 2
2 n + 3 chia hết 3 n - 1
n 2 - 2 chia hết n - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(n2+3n)+(3n+9)+2 chia hết cho n+3
=>n(n+3)+3(n+3)+2 chia hết cho n+3
=>(n+3)(n+3)+2 chia hết cho n+3
Mà (n+3)(n+3) chia hết cho n+3
=>2 chia hết cho n+3
=> n+3 thuộc Ư(2)={1;2;-1;-2}
=>n thuộc {-2;-1;-4;-5}
Để A nguyên
=>n2-3n+1 chia hết cho n+1
=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1
=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1
Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1
=>1 chia hết cho n+1
=>n+1 thuộc Ư(1)={1;-1}
=>n thuộc {0;-2}
1/
Ta có 2n+7=2n-6+13=2(n-3)+13
Vì \(2\left(n-3\right)⋮\left(n-3\right)\)
Để \(\left[2\left(n-3\right)+13\right]⋮\left(n-3\right)\Leftrightarrow13⋮\left(n-3\right)\Leftrightarrow\left(n-3\right)\inƯ_{ }_{_{ }\left(13_{ }\right)_{ }}=\left\{\pm1;\pm13\right\}\)Ta có bảng:
n-3 | -13 | -1 | 1 | 13 |
n | -10 | 2 | 4 | 16 |
Vậy...
Câu 2 tt
3/3n+2 chia hếy 2n-1
Ta có \(\hept{\begin{cases}\left(3n+2\right)⋮\left(2n-1\right)\\\left(2n-1\right)⋮\left(2n-1\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(3n+2\right)⋮\left(2n-1\right)\\3\left(2n-1\right)⋮\left(2n-1\right)\end{cases}}\)
\(\Rightarrow2\left(3n+2\right)-3\left(2n-1\right)⋮\left(2n-1\right)\)
\(\Rightarrow1⋮\left(2n-1\right)\)
\(\Rightarrow\left(2n-1\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
Kẻ bảng như trên nhá bn
T.i.c.k cho mik
#TM