tìm x,y thuộc N* biết: 4.x2+y và 4.y2+x là các số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$3x^2+x=4y^2+y$
$\Leftrightarrow 4(y^2-x^2)+(y-x)=-x^2$
$\Leftrightarrow (y-x)[4(x+y)+1]=x^2$
$\Leftrightarrow (x-y)[4(x+y)+1]=x^2$
Gọi $d=(x-y, 4x+4y+1)$
Khi đó: $x-y\vdots d(1); 4x+4y+1\vdots d(2)$. Mà $x^2=(x-y)(4x+4y+1)$ nên $x^2\vdots d^2$
$\Rightarrow x\vdots d(3)$.
Từ $(1); (3)\Rightarrow y\vdots d$
Từ $x,y\vdots d$ và $4x+4y+1\vdots d$ suy ra $1\vdots d$
$\Rightarrow d=1$
Vậy $x-y, 4x+4y+1$ nguyên tố cùng nhau. Mà tích của chúng là scp $(x^2)$ nên bản thân mỗi số trên cũng là scp.
Đặt $4x+4y+1=t^2$ với $t$ tự nhiên.
Khi đó: $A=2xy+4(x+y)^3+x^2+y^2=(x+y)^2+4(x+y)^3=(x+y)^2[1+4(x+y)]$
$=(x+y)^2t^2=[t(x+y)]^2$ là scp
Ta có đpcm.
Lời giải:
a. Vì $x,y$ tỉ lệ thuận nên đặt $y=kx$. Ta có:
$y_1=kx_1$ hay $\frac{1}{2}=k.2\Rightarrow k=\frac{1}{4}$. Vậy $y=\frac{1}{4}x$
$y_2=kx_2=\frac{1}{4}x_2=\frac{1}{4}.3=\frac{3}{4}$
b.
Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$.
$x_1y_1=k=x_2y_2$
$\Leftrightarrow \frac{1}{2}.4=x_2.(-4)$
$\Leftrightarrow x_2=\frac{-1}{2}$
Bạn tham khảo bài này:
https://hoc24.vn/cau-hoi/cho-biet-y-ti-le-thuan-voi-x1-x2-la-cac-gia-tri-cua-x-y1y2-la-cac-gia-tri-tuong-uong-cua-y-a-biet-xy-ti-le-thuan-va-x1-2-x2-3-y1-12-tim-y2-b-biet-xy-ti-le-nghich-v.3536605510330