K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

\(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{1000}}\)

\(\Rightarrow4A=4\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow4A=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)

\(\Rightarrow4A-A=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-...-\frac{1}{4^{999}}-\frac{1}{4^{1000}}\)

\(\Rightarrow3A=1-\frac{1}{4^{1000}}\)

\(\Rightarrow A=\frac{1-\frac{1}{4^{1000}}}{3}\) 

làm tiếp nhé ...okok

27 tháng 11 2016

Ta có :

\(C=\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\)

\(\Rightarrow4C=1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\)

\(\Rightarrow4C-C=\left(1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{3.4^{1000}}< \frac{1}{3}\)

=> C < 1 / 3

27 tháng 11 2016

Ta có:

\(C=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\)

\(\Rightarrow4C=1+\frac{1}{4}+...+\frac{1}{4^{999}}\)

\(\Rightarrow4C-C=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)

\(\Rightarrow C=\left(1-\frac{1}{4^{1000}}\right).\frac{1}{3}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{4^{1000}.3}\)

\(\frac{1}{3}>\frac{1}{3}-\frac{1}{4^{1000}.3}\)

\(\Rightarrow C< \frac{1}{3}\)

Vậy \(C< \frac{1}{3}\)

14 tháng 4 2019

\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)

\(\Rightarrow T=\frac{1004}{1005}\)

14 tháng 4 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\frac{2010}{2011}\)

\(\Rightarrow A=\frac{1005}{2011}\)

16 tháng 2 2017

ngại làm quá

16 tháng 8 2018

\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)

\(3A=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)

\(2A=1-\frac{1}{3^{100}}\)

\(A=\frac{1-\frac{1}{3^{100}}}{2}< \frac{1-\frac{1}{3}}{2}=\frac{\frac{2}{3}}{2}=\frac{2}{3}.\frac{1}{2}=\frac{1}{3}< \frac{3}{4}\)

16 tháng 8 2018

vậy \(\frac{1}{^{3^{100}}}\) đâu bạn

mình ko hiểu tại sao lai còn \(\frac{1}{3}\)

15 tháng 6 2017

Tính 

a) 

\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\\ =\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100}\\ \)

\(=\left(\frac{1.2.3...99}{2.3...100}\right).\left(\frac{3.4.5...101}{2.3.4...100}\right)\\ =\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)

b) 

\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\\ < \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\\ \)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\\ =1-\frac{1}{n}< 1\)

15 tháng 6 2017

đờ mờ sao mày ra đề ác thế

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

11 tháng 7 2016

Đặt \(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+.....+\frac{1}{4^{1000}}\)

\(=>4A=1+\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{999}}\)

\(=>4A-A=\left(1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{1000}}\right)\)

\(=>3A=1-\frac{1}{4^{1000}}=>A=\frac{1-\frac{1}{4^{1000}}}{3}=\frac{1}{3}-\frac{1}{\frac{4^{1000}}{3}}<\frac{1}{3}\)

Vậy.......................