K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

27 tháng 7 2019

a, Ta có x là số hữu tỉ dương tức là : \(\frac{a-4}{a^2}>0\) hay a > 4

b, Ta có : x là số hữu tỉ âm tức là : \(\frac{a-4}{a^2}< 0\)hay a < 4

c, Ta có : x không là số hữu tỉ dương cũng không là số hữu tỉ âm suy ra x = 0 hay \(\frac{a-4}{a^2}=0\)hay a = 4

27 tháng 7 2019

dell bit

6 tháng 8 2019

a, Ta có x là số hữu tỉ dương tức là : \(\frac{2a-5}{-3}>0\) hay a > \(\frac{5}{2}\)

b, Ta có x là số hữu tỉ âm tức là : \(\frac{2a-5}{-3}< 0\)hay a < 5/2

c,Ta có x không là số hữu tỉ âm và cũng không phải là số hữu tỉ dương suy ra x = 0 hay \(\frac{2a-5}{-3}=0\) nên a = 5/2

a) Để x là số dương thì 2a-1>0

\(\Leftrightarrow a>\dfrac{1}{2}\)

b) Để x là số âm thì 2a-1<0

\(\Leftrightarrow a< \dfrac{1}{2}\)

c) Để x ko là số dương cũng ko là số âm thì 2a-1=0

hay \(a=\dfrac{1}{2}\)

21 tháng 7 2017

Bài 1:

a) Để số hữa tỉ x là dương thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)cùng dấu

Mà -2017 là âm 

=> 2m - 8 cũng là âm

=> 2m < 8

=> m < 4 

Vậy với m < 4 thì x là số hữa tỉ dương

b)   Để số hữa tỉ x là âm thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)khác  dấu

Mà -2017 là âm 

=> 2m - 8  là dương

=> 2m > 8 

=> m > 4 

Vậy với m > 4 thì x là số hữa tỉ âm

c)  Để số hữa tỉ x không là âm không dương thì tử số của phân số \(\frac{2m-8}{-2017}\)là 0 ( vì số hữa tỉ không âm không dương là 0 )

=> 2m - 8 = 0

=> 2m = 8

=> m = 4

Vậy với m = 4 thì x không âm không dương

Bài 2:

Để số hữu tỉ \(c=\frac{2x-4}{x+3}\) là số nguyên thì: \(2x-4⋮x+3\)

\(\Rightarrow2x+6-4-6⋮x+3\)

\(\Rightarrow\left(2x+6\right)-10⋮x+3\)

\(\Rightarrow10⋮x+3\)( vì \(\left(2x+6\right)⋮x+3\))

\(\Rightarrow x+3\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

\(\Rightarrow x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)

Vậy với \(x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)thì số hữu tỉ C là số nguyên

20 tháng 5 2022

để x ko lá số dương cũng ko là số âm khi:

\(\dfrac{2a+5}{2}=0\\ 2a+5=0\\ 2a=-5\\ a=-\dfrac{5}{2}\)

vậy...

20 tháng 5 2022

có 3 trường hợp tất cả mà :v

14 tháng 9 2021

a) 2a - 1/2 > 0

<=> a > 1/4

b) a < 1/4

c) a = 1/4

14 tháng 9 2021

bn giải lời giải ra hộ mik vs ạ

 

8 tháng 9 2019

\(a\)\(x\)là số hữu tỉ dương.

\(\Rightarrow\)\(\frac{n-2019}{2018}>0=\frac{0}{2018}=\frac{2019-2019}{2018}\).\(\Rightarrow x>2019\)

\(b\)\(x\)là số hữu tỉ âm.

\(\Rightarrow\)\(\frac{n-2019}{2018}< 0=\frac{0}{2018}=\frac{2019-2019}{2018}\)\(\Rightarrow x< 2019\)

\(c\)\(x\)không âm, không dương.

\(\Rightarrow\)\(x\)\(=0=\frac{0}{2018}=\frac{2019-2019}{2018}\)\(\Rightarrow x=2019\)

8 tháng 9 2019

A:N-2019>0=>N>2019

B:N<2019

C:N=2019

HỌC TỐT