TÌm nghiệm tự nhiên của phương trình: 2^x+65=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm hơi tắt nhé
- Nếu \(y=0\Rightarrow x^2=65\Rightarrow x\notin Z\)
- Nếu \(y>1\Rightarrow x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y^3-3y^2+3y-1\right)=64\Leftrightarrow x^2-\left(y-1\right)^3=64\)
- Mà \(x;y-1\in N;64=0^2+4^3=8^2+0^3\)
- \(Th1:\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
- \(Th2:\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)
- Thử lại ta có nghiệm nguyên là : \(\left(0;5\right),\left(8;1\right)\)
<=> x2 = 64 - (y-1)3 \(\ge0< =>4\ge y-1< =>y\le5.\)
y=5 => x=0 (thỏa mãn); y=4 => x2 = 37 (loại); y=3 => x2 =56 (loại); y= 2 => x2 = 63 loại; y=1 => x= 8; y=0 => x= 65 loại
vậy các nghiệm (x;y) = (0;5); (1;8)
2(x + y) + xy = x2 + y2
<=> x2 + y2 - 2x - 2y - xy = 0
<=> 4x2 + 4y2 - 4xy - 8x - 8y = 0
<=> (4x2 - 4xy + y2) - 4(2x - y) + 4 + 3y2 - 12y + 12 - 16 = 0
<=> (2x - y)2 - 4(2x - y) + 4 + 3(y2 - 4y + 4) = 16
<=> (2x - y - 2)2 = 16 - 3(y - 2)2 (1)
Do VT = (2x - y - 2)2 \(\ge\)0 \(\forall\)x;y
=> VP = 16 - 3(y - 2)2 \(\ge\)0
=> 3(y - 2)2 \(\le\) 16
=> (y - 2)2 \(\le\)16/3
Do y nguyên dương và (y - 2)2 là số chính phương => (y - 2)2 \(\in\){0; 1; 4}
=> y - 2 \(\in\){0; 1; -1; 2; -2}
Lập bảng:
y - 2 | 0 | 1 | -1 | 2 | -2 |
y | 2 | 3 | 1 | 4 | 0 |
Với y = 2 , khi đó pt (1) trở thành: (2x - 2 - 2)2 = 16 - 3.0
<=> (2x - 4)2 = 16
<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\)
<=> \(\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Với y = 3 .... (tự thay vào tìm x)
x2-y2=y+1
<=> 4x2-4y2=4y+4
<=>4x2-(4y2+4y+1)=3
<=>(2x-2y-1)(2x+2y+1)=3=1.3 (do 2x+2y+1>2x-2y-1>0)
<=>2x-2y-1=1 và 2x+2y+1=3
<=>x-y=1 và x+y=1
=>x=1 và y=0(thỏa mãn)
Vậy x=1 và y=0
ta có : 2x+1 là số chia hết cho 2 dư 1
=> y2 chia hết cho 2 dư 1
=>y=2k+1 =>y2=4k2+1
khi đó : 2x+1=4k2+1
=>2x=4k2
tại 2x=4k2 và y2=4k2+1 thì thỏa mãn pt đã cho
vậy đáp số : \(\hept{\begin{cases}2^x=4k^2\\y^2=4k^2+1\end{cases}}\)với k là số nguyên tùy ý
\(x\) mà chẵn thì bài toán hoá ra là tìm 2 số chính phương lệch nhau 3 đơn vị (là 1 với 4, trường hợp này bạn tự làm nhé)
\(x\) lẻ thì \(2^x\) đồng dư -1 (mod 3) suy ra \(y^2\) đồng dư -1 (mod 3) (vô lí)
Với \(x=0\) thì pt thành \(y^2=66\), vô lí.
Với \(x\ge1\) thì ta thấy \(y\) lẻ.
pt \(\Leftrightarrow2^x+64=y^2-1\)
\(\Leftrightarrow2^x+64=\left(y-1\right)\left(y+1\right)\) (*)
Đặt \(y=2z+1\left(z\inℕ\right)\). Khi đó
(*) \(\Leftrightarrow2^x+64=2z\left(2z+2\right)\)
\(\Leftrightarrow2^{x-2}+16=z\left(z+1\right)\) (1)
Nếu \(x=2\) thì VT lẻ, VP chẵn, vô lý.
Nếu \(x=6\) thì (1) thành \(32=z\left(z+1\right)\), vô lý.
Nếu \(x\ge7\) thì (1) thành \(2^4\left(2^{x-6}+1\right)=z\left(z+1\right)\)
Bởi \(gcd\left(2^4,2^{x-6}+1\right)=gcd\left(z,z+1\right)=1\) nên từ đây
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}z⋮16\\z\equiv-1\left[16\right]\end{matrix}\right.\\\left[{}\begin{matrix}16⋮z\\2^{x-6}+1⋮z\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z=16\\\left\{{}\begin{matrix}z+1⋮16\\z^{x-6}+1⋮z\end{matrix}\right.\end{matrix}\right.\)
TH1: \(z=16\Rightarrow2^{x-6}=2^4\Leftrightarrow x=10\Leftrightarrow y=33\)
TH2: \(\left\{{}\begin{matrix}z+1⋮16\\2^{x-6}+1⋮z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z\equiv-1\left[16\right]\\2^{x-6}+1⋮z\end{matrix}\right.\). Lại có \(16\left(2^{x-6}+1\right)⋮z+1\)
và \(\left(2^{x-6}+1\right)< z\left(z+1\right)\), đồng thời để ý rằng \(gcd\left(z,z+1\right)=1\) nên từ đó suy ra \(16⋮z+1\) (vì nếu không thì \(2^{x-6}+1⋮x\left(x+1\right)\), vô lí vì \(2^{x-6}+1< x\left(x+1\right)\))
\(z+1=16\Rightarrow z=15\) \(\Rightarrow2^{x-6}+1=15\), vô lý.
Nếu \(x\le5\) thì \(x\in\left\{3,4,5\right\}\). Thử lại, ta thấy \(x=4\) thỏa mãn \(\Rightarrow y=9\)
Do đó pt đã cho có các nghiệm tự nhiên là \(\left(4,9\right),\left(10,33\right)\)