\(9x^2-6x+5\)
Tìm GTNN của biểu thức trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(=\left|1-3x\right|+\left|3x-2\right|\)
\(\ge\left|1-3x+3x-2\right|=\left|-1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-3x\right)\left(3x-2\right)\ge0\Leftrightarrow\frac{1}{3}\le x\le\frac{2}{3}\)
Vậy \(A_{min}=1\) tại \(\frac{1}{3}\le x\le\frac{2}{3}\)
\(A=\left(x+3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=-3\\ B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{29}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\\ B_{min}=-\dfrac{29}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ C=\left(9x^2-12x+4\right)+2017=\left(3x-2\right)^2+2017\ge2017\\ C_{min}=2017\Leftrightarrow x=\dfrac{2}{3}\)
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
\(Q=\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}+2011\)
\(Q=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}+2011\)
\(Q=\left|3x-1\right|+\left|5-3x\right|+2011\)
Đặt \(Q'=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)
Đẳng thức xảy ra \(\Leftrightarrow\left(3x-1\right)\left(5-3x\right)\ge0\)
\(\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\)
\(\Rightarrow Min_Q=Min_{Q'}+2011=4+2011=2015\)
Q = \(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}+2011\)
Q = \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-5\right)^2}+2011\)
Q = \(3x-1+3x-5+2011\)
Q = \(6x+2005\)
\(M=9x^2+y^2-6x+3y+5\)
\(=\left(9x^2+6x+1\right)+\left(y^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}\)
\(=\left(3x+1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{3}\) và \(y=-\dfrac{3}{2}\)