K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2023

Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!

a:6x-5-9x^2

=-(9x^2-6x+5)

=-(9x^2-6x+1+4)

=-(3x-1)^2-4<=-4

=>A>=2/-4=-1/2

Dấu = xảy ra khi x=1/3

b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)

2x^2-3x+2=2(x^2-3/2x+1)

=2(x^2-2*x*3/4+9/16+7/16)

=2(x-3/4)^2+7/8>=7/8

=>-1/2x^2-3x+2<=-1:7/8=-8/7

=>B<=-8/7+2=6/7

Dâu = xảy ra khi x=3/4

d: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{A}\)

hay A=x-2

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:

a.

 \(\frac{10}{x+2}=\frac{60}{6(x+2)}=\frac{60(x-2)}{6(x+2)(x-2)}=\frac{60(x-2)}{6(x^2-4)}\)

\(\frac{5}{2x-4}=\frac{15(x+2)}{6(x-2)(x+2)}=\frac{15(x+2)}{6(x^2-4)}\)

\(\frac{1}{6-3x}=\frac{x+2}{3(2-x)}=\frac{2(x+2)^2}{6(2-x)(2+x)}=\frac{-2(x+2)^2}{6(x^2-4)}\)

b.

\(\frac{1}{x+2}=\frac{x(2-x)}{x(x+2)(2-x)}=\frac{x(2-x)}{x(4-x^2)}\)

\(\frac{8}{2x-x^2}=\frac{8(x+2)}{(x+2)x(2-x)}=\frac{8(x+2)}{x(4-x^2)}\)

c.

\(\frac{4x^2-3x+5}{x^3-1}\)

\(\frac{1-2x}{x^2+x+1}=\frac{(1-2x)(x-1)}{(x-1)(x^2+x+1)}=\frac{-2x^2+3x-1}{x^3-1}\)

\(-2=\frac{-2(x^3-1)}{x^3-1}\)

 

a: \(x-3\left(2x-6\right)=21-\left(5x+3\right)\)

=>\(x-6x+18=21-5x-3\)

=>18=18(luôn đúng)

=>\(x\in R\)

b: \(\left(x-2\right)\left(x+2\right)-\left(x-1\right)^2=2\left(x+1\right)\)

=>\(x^2-4-x^2+2x-1=2x+2\)

=>2x-5=2x+2

=>-7=0(vô lý)

=>\(x\in\varnothing\)

c: \(\dfrac{9x+4}{6}=1-\dfrac{3x-5}{9}\)

=>\(\dfrac{3\left(9x+4\right)}{18}=\dfrac{18}{18}-\dfrac{2\left(3x-5\right)}{18}\)

=>3(9x+4)=18-2(3x-5)

=>27x+12=18-6x+10

=>27x+12=-6x+28

=>33x=16

=>\(x=\dfrac{16}{33}\left(nhận\right)\)

d: ĐKXĐ: \(x\notin\left\{2;5\right\}\)

\(\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)

=>\(\dfrac{6x+1}{\left(x-2\right)\left(x-5\right)}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)

=>\(6x+1+5\left(x-5\right)=3\left(x-2\right)\)

=>6x+1+5x-25=3x-6

=>11x-24=3x-6

=>8x=18

=>\(x=\dfrac{9}{4}\left(nhận\right)\)

26 tháng 1

a: x−3(2x−6)=21−(5x+3)

=>x−6x+18=21−5x−3

=>18=18(luôn đúng)

=>x∈R

b: (x−2)(x+2)−(x−1)2=2(x+1)

=>x2−4−x2+2x−1=2x+2

=>2x-5=2x+2

=>-7=0(vô lý)

=>x∈∅

c: 9x+46=1−3x−59

=>3(9x+4)18=1818−2(3x−5)18

=>3(9x+4)=18-2(3x-5)

=>27x+12=18-6x+10

=>27x+12=-6x+28

=>33x=16

=>x=1633(nhận)

d: ĐKXĐ: x∉{2;5}

6x+1x2−7x+10+5x−2=3x−5

=>6x+1(x−2)(x−5)+5x−2=3x−5

=>6x+1+5(x−5)=3(x−2)6

=>6x+1+5x-25=3x-6

=>11x-24=3x-6

=>8x=18

=>x=94(nhận)

19 tháng 1 2022

Câu 1:

\(\left(x-2\right)\left(x^2+2x+4\right)+25x=x\left(x+5\right)\left(x-5\right)+8\)

\(\Leftrightarrow x^3-8+25x=x\left(x^2-25\right)+8\)

\(\Leftrightarrow x^3-8+25x=x^3-25x+8\)

\(\Leftrightarrow x^3-8+25x-x^3+25x-8=0\)

\(\Leftrightarrow50x-16=0\)

\(\Leftrightarrow50x=16\)

\(\Leftrightarrow x=\dfrac{8}{25}\)

19 tháng 1 2022

Câu 2 :

\(\dfrac{x+5}{4}+\dfrac{3+2x}{3}=\dfrac{6x-1}{3}-\dfrac{1-2x}{12}\)

<=> \(\dfrac{3\left(x+5\right)}{12}+\dfrac{4\left(3+2x\right)}{12}=\dfrac{4\left(6x-1\right)}{12}-\dfrac{1-2x}{12}\)

<=>\(\dfrac{3x+15+12+8x}{12}=\dfrac{24x-4-1+2x}{12}\)

<=> 3x + 15 + 12 + 8x = 24x - 4 - 1 +2x

<=> 11x+27 = 26x -5

<=> ( 26x - 5 ) - ( 11x + 27 ) = 0

<=> 15x - 32 = 0

<=> 15x = 32

<=> x = \(\dfrac{32}{15}\)

24 tháng 4 2023

`a,` \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

`<=> (5(5x+2))/30 - (10(8x-1))/30 = (6(4x+2))/30 - (5.30)/30`

`<=> 5(5x+2) - 10(8x-1) =6(4x+2) - 5.30`

`<=> 25x + 10 - 80x + 10 = 24x+12 - 150`

`<=> -55x +20 = 24x-138`

`<=> -55x -24x=-138-20`

`<=>-79x=-158`

`<=> x=2`

Vậy pt có nghiệm `x=2`

`b,` \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

ĐKXĐ : \(\left\{{}\begin{matrix}x-2\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne0\end{matrix}\right.\)

Ta có : `(x+2)/(x-2) -1/x = 2/(x(x-2))`

`<=> (x(x+2))/(x(x-2)) - (x-2)/(x(x-2))  = 2/(x(x-2))`

`=> x^2 +2x - x +2 = 2`

`<=> x^2 + x =0`

`<=>x(x+1)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-1\end{matrix}\right.\)

Vậy pt có nghiệm `x=-1`

`c,2x^3 + 6x^2 =x^2 +3x`

`<=> 2x^3 + 6x^2 -x^2 -3x=0`

`<=> 2x^3 + 5x^2 -3x=0`

`->` Đề có sai ko ạ ?

`d,` \(\left|x-4\right|+3x=5\) `(1)`

Thường hợp `1` : `x-4 >= 0<=> x >=0` thì phương trình `(1)` thở thành :

`x-4 = 5-3x`

`<=> x+3x=5+4`

`<=> 4x=9`

`<=> x= 9/4 (t//m)`

Trường hợp `2` : `x-4< 0<=> x<0` thì phương trình `(1)` trở thành :

`-(x-4) =5-3x`

`<=> -x +4=5-3x`

`<=> -x+3x=5-4`

`<=> 2x =1`

`<=>x=1/2 ( kt//m)`

Vậy phương trình có nghiệm `x=9/4`

 

 

24 tháng 4 2023

đây là phương trình mà đâu phải bất phương trình đâu

a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)

\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{3x-1}{3x+1}\)

\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)

b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)

\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)

\(=\dfrac{x-3}{3x}\)

\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)

c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)

\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)

\(=\dfrac{x-2}{2x}\)

\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)

24 tháng 7 2017

câu d

\(D=\dfrac{\left(1-x^2\right)}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{\left(1-x^2\right)\left(x^2-x-3\right)+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{x^2-x-3-x^4+x^3-3x^2+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x^4+x^3+x^2-15x}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x\left(x^3-x^2-x+15\right)}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-\left(x^3-x^2-x+15\right)}{\left(x+3\right)}\end{matrix}\right.\)

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

17 tháng 3 2018

\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)

= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)

=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)

= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+1+4}\)

= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)

vì (x-1)2 ≥ 0 ∀ x

⇔ (x-1)2 +4 ≥ 4

\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)

\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)

⇔ A \(\le\dfrac{7}{2}\)

⇔ Min A =\(\dfrac{7}{2}\)

khi x-1=0

⇔ x=1

vậy ....

17 tháng 3 2018

Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)

\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(B=2-\dfrac{3}{x^2-8x+16+6}\)

\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)

\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)