Cho tam giác ABC, E thuộc đường phân giác góc ngoài tại đỉnh B của tam giác ( E khác B ). CMR EA + EC > AB + AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi K là trung điểm của AC => AK = KC = AC/2 = AB
Nối EK
Xét t/g EAK và t/g EAB có:
AK = AB (cmt)
EAK = EAB ( vì AE là phân giác KAB)
EA là cạnh chung
Do đó, t/g EAK = t/g EAB (c.g.c)
=> EKA = EBA = 90o (2 góc tương ứng)
Xét t/g EKC vuông tại K và t/g EKA vuông tại K có:
EK là cạnh chung
KC = KA ( cách vẽ)
Do đó, t/g EKC = t/g EKA (2 cạnh góc vuông)
=> EC = EA (2 cạnh tương ứng) (đpcm)
b) t/g EKC = t/g EKA (câu a)
=> ECK = EAK (2 góc tương ứng)
= KAB/2
Tam giác CBA vuông tại B có: BCA + BAC = 90o
=> BCA + 2.BCA= 90o
=> 3.BCA = 90o
=> BCA = 90o : 3 = 30o
BAC = 90o - 30o = 60o
Ta có: AE là tia phân giác góc trong tại đỉnh A
AF là tia phân giác góc ngoài tại đỉnh A
Suy ra: AE ⊥ AF (tính chất hai góc kề bù)
Vậy AE ⊥ DF.
xét 2 tam giác AMB và DMC
có AM = DM ( gt )
góc DMC = góc AMB ( 2 góc đối đỉnh )
BM = CM ( M là trung điểm của BC )
=> tam giác AMB = tam giác DMC ( c.g.c ) ( đpcm )
b, xét hai tam giác AMC và DMB
có AM = DM ( gt )
góc DMB = góc AMC ( 2 góc đối đỉnh )
BM = CM ( M là trung điểm của BC )
=> tam giác AMC = ta giác DMB ( c.g.c )
=> góc DBM = góc ACM ( 2 góc tương ứng )
mà 2 góc trên nằm ở vị trí so le trong của 2 đt AC và BD
=> AC // BD ( đpcm )
c, từ b có
tam giác AMC = tam giác DMB ( c.g.c )
=> AC = BD ( 2 cạnh tương ứng )
và góc DBM = góc ACM ( 2 góc tương ứng )
xét hai tam giác AKC và BHD
có góc BHD = góc CKA = 90 độ
AC = BD (cmt)
góc DBM = góc ACM ( cmt )
=> tam giác AKC = tam giác BHD ( cạnh huyền - govs nhọn )
=> BH = CK ( 2 cạnh tương ứng )(đpcm )