\(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
<=> \(\sqrt{x^2-2x+5}=\sqrt{29}-\sqrt{x^2+2x+10}\)
<=> \(x^2-2x+5=x^2+2x+39-2\sqrt{29\left(x^2+2x+10\right)}\)
<=> \(2\sqrt{29x^2+58x+290}=4x+34\)
<=> \(\sqrt{29x^2+58x+290}=2x+17\)
<=> \(29x^2+58x+290=4x^2+68x+289\)
<=> \(25x^2-10x+1=0\)
<=> \(\left(5x-1\right)^2=0\)
<=> \(x=\frac{1}{5}\)
Lời giải:
ĐK: \(x\in\mathbb{R}\)
\(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
\(\Leftrightarrow \sqrt{x^2+2x+10}=\sqrt{29}-\sqrt{x^2-2x+5}\)
Bình phương 2 vế:
\(x^2+2x+10=29+x^2-2x+5-2\sqrt{29(x^2-2x+5)}\)
\(\Leftrightarrow 4x-24=-2\sqrt{29(x^2-2x+5)}\)
\(\Leftrightarrow 12-2x=\sqrt{29(x^2-2x+5)}\)
\(\Rightarrow \left\{\begin{matrix} 12-2x\geq 0\\ (12-2x)^2=29(x^2-2x+5)\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 6\\ 4x^2+144-48x=29x^2-58x+145\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 6\\ 25x^2-10x+1=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\leq 6\\ (5x-1)^2=0\end{matrix}\right.\Rightarrow x=\frac{1}{5}\)
(thỏa mãn)
Vậy.....
Nó có 1 nghiệm là 9
Bạn chứng minh nó là nghiệm duy nhất đi
1) \(ĐK:x\in R\)
2) \(ĐK:x< 0\)
3) \(ĐK:x\in\varnothing\)
4) \(=\sqrt{\left(x+1\right)^2+2}\)
\(ĐK:x\in R\)
5) \(=\sqrt{-\left(a-4\right)^2}\)
\(ĐK:x\in\varnothing\)
\(\sqrt{\left(x-1\right)^2+4}+\sqrt{\left(x+1\right)^2+9}=\sqrt{29}\)
\(the,a=\left(x-1\right)^2+4\)
\(\sqrt{a}+\sqrt{a+5}=\sqrt{29}\)
\(a+a+5+2\sqrt{a^2+5a}=29\)
\(2a+2\sqrt{a^2+5a}=24\)
\(a+\sqrt{a^2+5a}=12\)
\(\sqrt{a^2+5a}=12-a\)
\(a^2+5a=144-24a+a^2\)
\(29a=144\)
\(a=\frac{144}{29}\)